scalaz.std.AnyVal.scala Maven / Gradle / Ivy
package scalaz
package std
import scalaz._
import Id._
trait AnyValInstances {
implicit val unitInstance: Monoid[Unit] with Enum[Unit] with Show[Unit] = new Monoid[Unit] with Enum[Unit] with Show[Unit] {
override def shows(f: Unit) = ().toString
def append(f1: Unit, f2: => Unit) = ()
def zero = ()
def order(x: Unit, y: Unit) = Ordering.EQ
def succ(u: Unit) = ()
def pred(u: Unit) = ()
override def succn(a: Int, b: Unit) = ()
override def predn(a: Int, b: Unit) = ()
override def min = Some(())
override def max = Some(())
override def equalIsNatural: Boolean = true
}
implicit object booleanInstance extends Enum[Boolean] with Show[Boolean] {
override def shows(f: Boolean) = f.toString
def order(x: Boolean, y: Boolean) = if (x < y) Ordering.LT else if (x == y) Ordering.EQ else Ordering.GT
def succ(b: Boolean) = !b
def pred(b: Boolean) = !b
override def succn(n: Int, b: Boolean) = if(n % 2 == 0) b else !b
override def predn(n: Int, b: Boolean) = if(n % 2 == 0) b else !b
override def min = Some(false)
override def max = Some(true)
override def equalIsNatural: Boolean = true
object conjunction extends Monoid[Boolean] {
def append(f1: Boolean, f2: => Boolean) = f1 && f2
def zero: Boolean = true
}
object disjunction extends Monoid[Boolean] {
def append(f1: Boolean, f2: => Boolean) = f1 || f2
def zero = false
}
}
import Tags.{Conjunction, Disjunction}
implicit val booleanDisjunctionNewTypeInstance: Monoid[Boolean @@ Disjunction] with Enum[Boolean @@ Disjunction] = new Monoid[Boolean @@ Disjunction] with Enum[Boolean @@ Disjunction] {
def append(f1: Boolean @@ Disjunction, f2: => Boolean @@ Disjunction) = Disjunction(Tag.unwrap(f1) || Tag.unwrap(f2))
def zero: Boolean @@ Disjunction = Disjunction(false)
def order(a1: Boolean @@ Disjunction, a2: Boolean @@ Disjunction) = Order[Boolean].order(Tag.unwrap(a1), Tag.unwrap(a2))
def succ(b: Boolean @@ Disjunction) = Disjunction(Enum[Boolean].succ(Tag.unwrap(b)))
def pred(b: Boolean @@ Disjunction) = Disjunction(Enum[Boolean].pred(Tag.unwrap(b)))
override def succn(n: Int, b: Boolean @@ Disjunction) = Disjunction(Enum[Boolean].succn(n, Tag.unwrap(b)))
override def predn(n: Int, b: Boolean @@ Disjunction) = Disjunction(Enum[Boolean].predn(n, Tag.unwrap(b)))
override def min = Disjunction.subst(Enum[Boolean].min)
override def max = Disjunction.subst(Enum[Boolean].max)
}
implicit val booleanConjunctionNewTypeInstance: Monoid[Boolean @@ Conjunction] with Enum[Boolean @@ Conjunction] = new Monoid[Boolean @@ Conjunction] with Enum[Boolean @@ Conjunction] {
def append(f1: Boolean @@ Conjunction, f2: => Boolean @@ Conjunction) = Conjunction(Tag.unwrap(f1) && Tag.unwrap(f2))
def zero: Boolean @@ Conjunction = Conjunction(true)
def order(a1: Boolean @@ Conjunction, a2: Boolean @@ Conjunction) = Order[Boolean].order(Tag.unwrap(a1), Tag.unwrap(a2))
def succ(b: Boolean @@ Conjunction) = Conjunction(Enum[Boolean].succ(Tag.unwrap(b)))
def pred(b: Boolean @@ Conjunction) = Conjunction(Enum[Boolean].pred(Tag.unwrap(b)))
override def succn(n: Int, b: Boolean @@ Conjunction) = Conjunction(Enum[Boolean].succn(n, Tag.unwrap(b)))
override def predn(n: Int, b: Boolean @@ Conjunction) = Conjunction(Enum[Boolean].predn(n, Tag.unwrap(b)))
override def min = Conjunction.subst(Enum[Boolean].min)
override def max = Conjunction.subst(Enum[Boolean].max)
}
implicit val byteInstance: Monoid[Byte] with Enum[Byte] with Show[Byte] = new Monoid[Byte] with Enum[Byte] with Show[Byte] {
override def shows(f: Byte) = f.toString
def append(f1: Byte, f2: => Byte) = (f1 + f2).toByte
def zero: Byte = 0
def order(x: Byte, y: Byte) = if (x < y) Ordering.LT else if (x == y) Ordering.EQ else Ordering.GT
def succ(b: Byte) = (b + 1).toByte
def pred(b: Byte) = (b - 1).toByte
override def succn(a: Int, b: Byte) = (b + a).toByte
override def predn(a: Int, b: Byte) = (b - a).toByte
override def min = Some(Byte.MinValue)
override def max = Some(Byte.MaxValue)
override def equalIsNatural: Boolean = true
}
import Tags.{Multiplication}
implicit val byteMultiplicationNewType: Monoid[Byte @@ Multiplication] with Enum[Byte @@ Multiplication] = new Monoid[Byte @@ Multiplication] with Enum[Byte @@ Multiplication] {
def append(f1: Byte @@ Multiplication, f2: => Byte @@ Multiplication) = Multiplication((Tag.unwrap(f1) * Tag.unwrap(f2)).toByte)
def zero: Byte @@ Multiplication = Multiplication(1)
def order(a1: Byte @@ Multiplication, a2: Byte @@ Multiplication) = Order[Byte].order(Tag.unwrap(a1), Tag.unwrap(a2))
def succ(b: Byte @@ Multiplication) = Multiplication(Enum[Byte].succ(Tag.unwrap(b)))
def pred(b: Byte @@ Multiplication) = Multiplication(Enum[Byte].pred(Tag.unwrap(b)))
override def succn(n: Int, b: Byte @@ Multiplication) = Multiplication(Enum[Byte].succn(n, Tag.unwrap(b)))
override def predn(n: Int, b: Byte @@ Multiplication) = Multiplication(Enum[Byte].predn(n, Tag.unwrap(b)))
override def min = Multiplication.subst(Enum[Byte].min)
override def max = Multiplication.subst(Enum[Byte].max)
override def equalIsNatural: Boolean = true
}
implicit val char: Monoid[Char] with Enum[Char] with Show[Char] = new Monoid[Char] with Enum[Char] with Show[Char] {
override def shows(f: Char) = f.toString
def append(f1: Char, f2: => Char) = (f1 + f2).toChar
def zero: Char = 0
def order(x: Char, y: Char) = if (x < y) Ordering.LT else if (x == y) Ordering.EQ else Ordering.GT
def succ(b: Char) = (b + 1).toChar
def pred(b: Char) = (b - 1).toChar
override def succn(a: Int, b: Char) = (b + a).toChar
override def predn(a: Int, b: Char) = (b - a).toChar
override def min = Some(Char.MinValue)
override def max = Some(Char.MaxValue)
override def equalIsNatural: Boolean = true
}
implicit val charMultiplicationNewType: Monoid[Char @@ Multiplication] with Enum[Char @@ Multiplication] = new Monoid[Char @@ Multiplication] with Enum[Char @@ Multiplication] {
def append(f1: Char @@ Multiplication, f2: => Char @@ Multiplication) = Multiplication((Tag.unwrap(f1) * Tag.unwrap(f2)).toChar)
def zero: Char @@ Multiplication = Multiplication(1)
def order(a1: Char @@ Multiplication, a2: Char @@ Multiplication) = Order[Char].order(Tag.unwrap(a1), Tag.unwrap(a2))
def succ(b: Char @@ Multiplication) = Multiplication(Enum[Char].succ(Tag.unwrap(b)))
def pred(b: Char @@ Multiplication) = Multiplication(Enum[Char].pred(Tag.unwrap(b)))
override def succn(n: Int, b: Char @@ Multiplication) = Multiplication(Enum[Char].succn(n, Tag.unwrap(b)))
override def predn(n: Int, b: Char @@ Multiplication) = Multiplication(Enum[Char].predn(n, Tag.unwrap(b)))
override def min = Multiplication.subst(Enum[Char].min)
override def max = Multiplication.subst(Enum[Char].max)
override def equalIsNatural: Boolean = true
}
implicit val shortInstance: Monoid[Short] with Enum[Short] with Show[Short] = new Monoid[Short] with Enum[Short] with Show[Short] {
override def shows(f: Short) = f.toString
def append(f1: Short, f2: => Short) = (f1 + f2).toShort
def zero: Short = 0
def order(x: Short, y: Short) = if (x < y) Ordering.LT else if (x == y) Ordering.EQ else Ordering.GT
def succ(b: Short) = (b + 1).toShort
def pred(b: Short) = (b - 1).toShort
override def succn(a: Int, b: Short) = (b + a).toShort
override def predn(a: Int, b: Short) = (b - a).toShort
override def min = Some(Short.MinValue)
override def max = Some(Short.MaxValue)
override def equalIsNatural: Boolean = true
}
implicit val shortMultiplicationNewType: Monoid[Short @@ Multiplication] with Enum[Short @@ Multiplication] = new Monoid[Short @@ Multiplication] with Enum[Short @@ Multiplication] {
def append(f1: Short @@ Multiplication, f2: => Short @@ Multiplication) = Multiplication((Tag.unwrap(f1) * Tag.unwrap(f2)).toShort)
def zero: Short @@ Multiplication = Multiplication(1)
def succ(b: Short @@ Multiplication) = Multiplication(Enum[Short].succ(Tag.unwrap(b)))
def pred(b: Short @@ Multiplication) = Multiplication(Enum[Short].pred(Tag.unwrap(b)))
override def succn(n: Int, b: Short @@ Multiplication) = Multiplication(Enum[Short].succn(n, Tag.unwrap(b)))
override def predn(n: Int, b: Short @@ Multiplication) = Multiplication(Enum[Short].predn(n, Tag.unwrap(b)))
override def min = Multiplication.subst(Enum[Short].min)
override def max = Multiplication.subst(Enum[Short].max)
def order(a1: Short @@ Multiplication, a2: Short @@ Multiplication) = Order[Short].order(Tag.unwrap(a1), Tag.unwrap(a2))
}
implicit val intInstance: Monoid[Int] with Enum[Int] with Show[Int] = new Monoid[Int] with Enum[Int] with Show[Int] {
override def shows(f: Int) = f.toString
def append(f1: Int, f2: => Int) = f1 + f2
def zero: Int = 0
def order(x: Int, y: Int) = if (x < y) Ordering.LT else if (x == y) Ordering.EQ else Ordering.GT
def succ(b: Int) = b + 1
def pred(b: Int) = b - 1
override def succn(a: Int, b: Int) = b + a
override def predn(a: Int, b: Int) = b - a
override def min = Some(Int.MinValue)
override def max = Some(Int.MaxValue)
override def equalIsNatural: Boolean = true
}
implicit val intMultiplicationNewType: Monoid[Int @@ Multiplication] with Enum[Int @@ Multiplication] = new Monoid[Int @@ Multiplication] with Enum[Int @@ Multiplication] {
def append(f1: Int @@ Multiplication, f2: => Int @@ Multiplication) = Multiplication(Tag.unwrap(f1) * Tag.unwrap(f2))
def zero: Int @@ Multiplication = Multiplication(1)
def succ(b: Int @@ Multiplication) = Multiplication(Enum[Int].succ(Tag.unwrap(b)))
def pred(b: Int @@ Multiplication) = Multiplication(Enum[Int].pred(Tag.unwrap(b)))
override def succn(n: Int, b: Int @@ Multiplication) = Multiplication(Enum[Int].succn(n, Tag.unwrap(b)))
override def predn(n: Int, b: Int @@ Multiplication) = Multiplication(Enum[Int].predn(n, Tag.unwrap(b)))
override def min = Multiplication.subst(Enum[Int].min)
override def max = Multiplication.subst(Enum[Int].max)
def order(a1: Int @@ Multiplication, a2: Int @@ Multiplication) = Order[Int].order(Tag.unwrap(a1), Tag.unwrap(a2))
}
implicit val longInstance: Monoid[Long] with Enum[Long] with Show[Long] = new Monoid[Long] with Enum[Long] with Show[Long] {
override def shows(f: Long) = f.toString
def append(f1: Long, f2: => Long) = f1 + f2
def zero: Long = 0L
def order(x: Long, y: Long) = if (x < y) Ordering.LT else if (x == y) Ordering.EQ else Ordering.GT
def succ(b: Long) = b + 1
def pred(b: Long) = b - 1
override def succn(a: Int, b: Long) = b + a
override def predn(a: Int, b: Long) = b - a
override def min = Some(Long.MinValue)
override def max = Some(Long.MaxValue)
override def equalIsNatural: Boolean = true
}
implicit val longMultiplicationNewType: Monoid[Long @@ Multiplication] with Enum[Long @@ Multiplication] = new Monoid[Long @@ Multiplication] with Enum[Long @@ Multiplication] {
def append(f1: Long @@ Multiplication, f2: => Long @@ Multiplication) = Multiplication(Tag.unwrap(f1) * Tag.unwrap(f2))
def zero: Long @@ Multiplication = Multiplication(1)
def succ(b: Long @@ Multiplication) = Multiplication(Enum[Long].succ(Tag.unwrap(b)))
def pred(b: Long @@ Multiplication) = Multiplication(Enum[Long].pred(Tag.unwrap(b)))
override def succn(n: Int, b: Long @@ Multiplication) = Multiplication(Enum[Long].succn(n, Tag.unwrap(b)))
override def predn(n: Int, b: Long @@ Multiplication) = Multiplication(Enum[Long].predn(n, Tag.unwrap(b)))
override def min = Multiplication.subst(Enum[Long].min)
override def max = Multiplication.subst(Enum[Long].max)
def order(a1: Long @@ Multiplication, a2: Long @@ Multiplication) = Order[Long].order(Tag.unwrap(a1), Tag.unwrap(a2))
}
implicit val floatInstance: Order[Float] with Show[Float] = new Order[Float] with Show[Float] {
override def shows(f: Float) = f.toString
override def equalIsNatural: Boolean = true
def order(x: Float, y: Float) = if (x < y) Ordering.LT else if (x == y) Ordering.EQ else Ordering.GT
}
implicit val doubleInstance: Order[Double] with Show[Double] = new Order[Double] with Show[Double] {
override def shows(f: Double) = f.toString
override def equalIsNatural: Boolean = true
def order(x: Double, y: Double) = if (x < y) Ordering.LT else if (x == y) Ordering.EQ else Ordering.GT
}
}
trait BooleanFunctions {
/**
* Conjunction. (AND)
*
* {{{
* p q p ∧ q
* 0 0 0
* 0 1 0
* 1 0 0
* 1 1 1
* }}}
*/
final def conjunction(p: Boolean, q: => Boolean) = p && q
/**
* Disjunction. (OR)
*
* {{{
* p q p ∨ q
* 0 0 0
* 0 1 1
* 1 0 1
* 1 1 1
* }}}
*/
final def disjunction(p: Boolean, q: => Boolean) = p || q
/**
* Negation of Disjunction. (NOR)
*
* {{{
* p q p !|| q
* 0 0 1
* 0 1 0
* 1 0 0
* 1 1 0
* }}}
*/
final def nor(p: Boolean, q: => Boolean) = !(p || q)
/**
* Negation of Conjunction. (NAND)
*
* {{{
* p q p !&& q
* 0 0 1
* 0 1 1
* 1 0 1
* 1 1 0
* }}}
*/
final def nand(p: Boolean, q: => Boolean) = !(p && q)
/**
* Conditional.
*
* {{{
* p q p --> q
* 0 0 1
* 0 1 1
* 1 0 0
* 1 1 1
* }}}
*/
final def conditional(p: Boolean, q: => Boolean) = !p || q
/**
* Inverse Conditional.
*
* {{{
* p q p <-- q
* 0 0 1
* 0 1 0
* 1 0 1
* 1 1 1
* }}}
*/
final def inverseConditional(p: Boolean, q: => Boolean) = p || !q
/**
* Negational of Conditional.
*
* {{{
* p q p ⇏ q
* 0 0 0
* 0 1 0
* 1 0 1
* 1 1 0
* }}}
*/
final def negConditional(p: Boolean, q: => Boolean) = p && !q
/**
* Negation of Inverse Conditional.
*
* {{{
* p q p <\- q
* 0 0 0
* 0 1 1
* 1 0 0
* 1 1 0
* }}}
*/
final def negInverseConditional(p: Boolean, q: => Boolean) = !p && q
/**
* Executes the given side-effect if `cond` is `false`
*/
final def unless(cond: Boolean)(f: => Unit) = if (!cond) f
/**
* Executes the given side-effect if `cond` is `true`
*/
final def when(cond: Boolean)(f: => Unit) = if (cond) f
/**
* Returns the given argument if `cond` is `false`, otherwise, unit lifted into M.
*/
final def unlessM[M[_], A](cond: Boolean)(f: => M[A])(implicit M: Applicative[M]): M[Unit] = M.unlessM(cond)(f)
/** A version of `unlessM` that infers the type constructor `M`. */
final def unlessMU[MA](cond: Boolean)(f: => MA)(implicit M: Unapply[Applicative, MA]): M.M[Unit] = M.TC.unlessM(cond)(M(f))
/**
* Returns the given argument if `cond` is `true`, otherwise, unit lifted into M.
*/
final def whenM[M[_], A](cond: Boolean)(f: => M[A])(implicit M: Applicative[M]): M[Unit] = M.whenM(cond)(f)
/** A version of `whenM` that infers the type constructor `M`. */
final def whenMU[MA](cond: Boolean)(f: => MA)(implicit M: Unapply[Applicative, MA]): M.M[Unit] = M.TC.whenM(cond)(M(f))
/**
* @return `t` if `cond` is `true`, `f` otherwise
*/
final def fold[A](cond: Boolean, t: => A, f: => A): A = if (cond) t else f
/**
* Returns the given argument in `Some` if `cond` is `true`, `None` otherwise.
*/
final def option[A](cond: Boolean, a: => A): Option[A] = if (cond) Some(a) else None
/** Returns `1` if `p` is true, or `0` otherwise. */
def test(p: Boolean): Int = if (p) 1 else 0
/**
* Returns the given argument if `cond` is `true`, otherwise, the zero element for the type of the given
* argument.
*/
final def valueOrZero[A](cond: Boolean)(value: => A)(implicit z: Monoid[A]): A = if (cond) value else z.zero
/**
* Returns the given argument if `cond` is `false`, otherwise, the zero element for the type of the given
* argument.
*/
final def zeroOrValue[A](cond: Boolean)(value: => A)(implicit z: Monoid[A]): A = if (!cond) value else z.zero
/**
* Returns the value `a` lifted into the context `M` if `cond` is `true`, otherwise, the empty value
* for `M`.
*/
final def pointOrEmpty[M[_], A](cond: Boolean)(a: => A)(implicit M: Applicative[M], M0: PlusEmpty[M]): M[A] =
if (cond) M.point(a) else M0.empty
/**
* Returns the value `a` lifted into the context `M` if `cond` is `false`, otherwise, the empty value
* for `M`.
*/
final def emptyOrPure[M[_], A](cond: Boolean)(a: => A)(implicit M: Applicative[M], M0: PlusEmpty[M]): M[A] =
if (!cond) M.point(a) else M0.empty
final def pointOrEmptyNT[M[_]](cond: Boolean)(implicit M: Applicative[M], M0: PlusEmpty[M]): (Id ~> M) =
new (Id ~> M) {
def apply[A](a: A): M[A] = pointOrEmpty[M, A](cond)(a)
}
final def emptyOrPureNT[M[_]](cond: Boolean)(implicit M: Applicative[M], M0: PlusEmpty[M]): (Id ~> M) =
new (Id ~> M) {
def apply[A](a: A): M[A] = emptyOrPure[M, A](cond)(a)
}
}
trait IntFunctions {
def heaviside(i: Int):Int = if (i < 0) 0 else 1
}
trait ShortFunctions {
def heaviside(i: Short):Short = if (i < 0) 0 else 1
}
trait LongFunctions {
def heaviside(i: Long):Long = if (i < 0) 0 else 1
}
trait DoubleFunctions {
def heaviside(i: Double):Double = if (i < 0) 0 else 1.0
}
trait FloatFunctions {
def heaviside(i: Float):Float = if (i < 0) 0 else 1.0f
}
object anyVal extends AnyValInstances
object boolean extends BooleanFunctions
object short extends ShortFunctions
object int extends IntFunctions
object long extends LongFunctions
object double extends DoubleFunctions
object float extends FloatFunctions
© 2015 - 2025 Weber Informatics LLC | Privacy Policy