scalaz.iteratee.IterateeT.scala Maven / Gradle / Ivy
package scalaz
package iteratee
import effect._
import Iteratee._
import Id._
/**
* A data sink.
*
* Represents a value of type `F[StepT[E, F, A]]`
*
* @see [[scalaz.iteratee.StepT]]
*
* @tparam E The type of the input data (mnemonic: '''E'''lement type)
* @tparam F The type constructor representing an effect.
* The type constructor [[scalaz.Id]] is used to model pure computations, and is fixed as such in the type alias [[scalaz.iteratee.Iteratee]].
* @tparam A The type of the calculated result
*/
sealed abstract class IterateeT[E, F[_], A] {
def value: F[StepT[E, F, A]]
def foldT[Z](
cont: (Input[E] => IterateeT[E, F, A]) => F[Z]
, done: (=> A, => Input[E]) => F[Z]
)(implicit F: Bind[F]): F[Z] =
F.bind(value)((s: StepT[E, F, A]) => s(cont, done))
/**
* Run this iteratee
*/
def run(implicit F: Monad[F]): F[A] = {
F.bind((this &= enumEofT[E, F]).value)((s: StepT[E, F, A]) => s.fold(
cont = _ => sys.error("diverging iteratee")
, done = (a, _) => F.point(a)
))
}
def flatMap[B](f: A => IterateeT[E, F, B])(implicit F: Monad[F]): IterateeT[E, F, B] = {
def through(x: IterateeT[E, F, A]): IterateeT[E, F, B] =
iterateeT(
F.bind(x.value)((s: StepT[E, F, A]) => s.fold[F[StepT[E, F, B]]](
cont = k => F.point(StepT.scont(u => through(k(u))))
, done = (a, i) =>
if (i.isEmpty)
f(a).value
else
F.bind(f(a).value)(_.fold(
cont = kk => kk(i).value
, done = (aa, _) => F.point(StepT.sdone[E, F, B](aa, i))
))
)))
through(this)
}
def map[B](f: A => B)(implicit F: Monad[F]): IterateeT[E, F, B] = {
flatMap(a => StepT.sdone[E, F, B](f(a), emptyInput).pointI)
}
def contramap[EE](f: EE => E)(implicit F: Monad[F]): IterateeT[EE, F, A] = {
def step(s: StepT[E, F, A]): IterateeT[EE, F, A] = s.fold[IterateeT[EE, F, A]](
cont = k => cont((in: Input[EE]) => k(in.map(i => f(i))) >>== step),
done = (a, i) => done(a, if (i.isEof) eofInput else emptyInput)
)
this >>== step
}
/**
* A generalization of >>== that allows a step function which returns its result in a different, "bigger" monad.
* The monad for G must perform all the effects of F as part of its evaluation; in the trivial case, of course
* F and G will have the same monad.
*/
def advance[EE, AA, G[_]](f: StepT[E, F, A] => IterateeT[EE, G, AA], trans: F ~> G)(implicit G: Bind[G]): IterateeT[EE, G, AA] = {
iterateeT(G.bind(trans(value))(s => f(s).value))
}
def advanceT[EE, AA, G[_]](f: StepT[E, F, A] => G[StepT[EE, F, AA]], trans: F ~> G)(implicit G: Bind[G]): G[StepT[EE, F, AA]] = {
G.bind(trans(value))(s => f(s))
}
/**
* Combine this Iteratee with an Enumerator-like function.
*
* Often used in combination with the implicit views such as `enumStream` and `enumIterator`, for example:
*
* {{{
* head[Unit, Int, Id] >>== Stream.continually(1) // enumStream(Stream.continually(1))
* }}}
*
* @param f An Enumerator-like function. If the type parameters `EE` and `BB` are chosen to be
* `E` and `B` respectively, the type of `f` is equivalent to `EnumeratorT[E, F, A]`.
*/
def >>==[EE, AA](f: StepT[E, F, A] => IterateeT[EE, F, AA])(implicit F: Bind[F]): IterateeT[EE, F, AA] =
iterateeT(F.bind(value)(s => f(s).value))
def %=[O](e: EnumerateeT[O, E, F])(implicit m: Monad[F]): IterateeT[O, F, A] =
(this >>== e[A]).joinI[E, A]
def &=(e: EnumeratorT[E, F])(implicit F: Bind[F]): IterateeT[E, F, A] =
this >>== e[A]
def mapI[G[_]](f: F ~> G)(implicit F: Functor[F]): IterateeT[E, G, A] = {
def step: StepT[E, F, A] => StepT[E, G, A] =
_.fold(
cont = k => scont[E, G, A](k andThen loop)
, done = (a, i) => sdone[E, G, A](a, i)
)
def loop: IterateeT[E, F, A] => IterateeT[E, G, A] = i => iterateeT(f(F.map(i.value)(step)))
loop(this)
}
def up[G[_]](implicit G: Applicative[G], F: Comonad[F]): IterateeT[E, G, A] = {
mapI(λ[F ~> G](a =>
G.point(F.copoint(a))
))
}
def joinI[I, B](implicit outer: IterateeT[E, F, A] === IterateeT[E, F, StepT[I, F, B]], M: Monad[F]): IterateeT[E, F, B] = {
val M0 = IterateeT.IterateeTMonad[E, F]
def check: StepT[I, F, B] => IterateeT[E, F, B] = _.fold(
cont = k => k(eofInput) >>== {
s => s.mapContOr(_ => sys.error("diverging iteratee"), check(s))
}
, done = (a, _) => M0.point(a)
)
outer(this) flatMap check
}
/**
* Feeds input elements to this iteratee until it is done, feeds the produced value to the
* inner iteratee. Then this iteratee will start over, looping until the inner iteratee is done.
*/
def sequenceI(implicit m: Monad[F]): EnumerateeT[E, A, F] =
new EnumerateeT[E, A, F] {
def apply[B] = {
def loop = doneOr(checkEof)
def checkEof: (Input[A] => IterateeT[A, F, B]) => IterateeT[E, F, StepT[A, F, B]] = k =>
isEof[E, F] flatMap {
eof =>
if (eof) done(scont(k), eofInput)
else step(k)
}
def step: (Input[A] => IterateeT[A, F, B]) => IterateeT[E, F, StepT[A, F, B]] = k =>
flatMap (a => k(elInput(a)) >>== loop)
loop
}
}
def zip[B](other: IterateeT[E, F, B])(implicit F: Monad[F]): IterateeT[E, F, (A, B)] = {
def step[Z](i: IterateeT[E, F, Z], in: Input[E]) =
IterateeT.IterateeTMonadTrans[E].liftM(i.foldT[(Option[(Z, Input[E])], IterateeT[E, F, Z])](
cont = k => F.point((None, k(in)))
, done = (a, x) => F.point((Some((a, x)), done(a, x)))
))
def loop(x: IterateeT[E, F, A], y: IterateeT[E, F, B])(in: Input[E]): IterateeT[E, F, (A, B)] = in(
el = _ =>
step(x, in) flatMap {
case (a, xx) =>
step(y, in) flatMap {
case (b, yy) => (a, b) match {
case (Some((a, e)), Some((b, ee))) => done((a, b), if (e.isEl) e else ee)
case _ => cont(loop(xx, yy))
}
}
}
, empty = cont(loop(x, y))
, eof = (x &= enumEofT[E, F]) flatMap (a => (y &= enumEofT[E, F]) map (b => (a, b)))
)
cont(loop(this, other))
}
}
object IterateeT extends IterateeTInstances with IterateeTFunctions {
def apply[E, F[_], A](s: F[StepT[E, F, A]]): IterateeT[E, F, A] =
iterateeT(s)
}
sealed abstract class IterateeTInstances0 {
implicit def IterateeTMonad[E, F[_]](implicit F0: Monad[F]): Monad[IterateeT[E, F, *]] =
new IterateeTMonad[E, F] {
implicit def F = F0
}
implicit def IterateeMonad[E]: Monad[Iteratee[E, *]] = IterateeTMonad[E, Id]
implicit def IterateeTMonadTransT[E, H[_[_], _]](implicit T0: MonadTrans[H]): MonadTrans[λ[(α[_], β) => IterateeT[E, H[α, *], β]]] =
new IterateeTMonadTransT[E, H] {
implicit def T = T0
}
}
sealed abstract class IterateeTInstances extends IterateeTInstances0 {
implicit def IterateeTMonadTrans[E]: Hoist[λ[(α[_], β) => IterateeT[E, α, β]]] =
new IterateeTHoist[E] { }
implicit def IterateeTHoistT[E, H[_[_], _]](implicit T0: Hoist[H]): Hoist[λ[(α[_], β) => IterateeT[E, H[α, *], β]]] =
new IterateeTHoistT[E, H] {
implicit def T = T0
}
implicit def IterateeTMonadIO[E, F[_]](implicit M0: MonadIO[F]): MonadIO[IterateeT[E, F, *]] =
new IterateeTMonadIO[E, F] {
implicit def F = M0
}
implicit def IterateeTContravariant[F[_]: Monad, A]: Contravariant[IterateeT[*, F, A]] =
new Contravariant[IterateeT[*, F, A]] {
def contramap[E, EE](r: IterateeT[E, F, A])(f: EE => E) = r.contramap(f)
}
}
trait IterateeTFunctions {
def iterateeT[E, F[_], A](s: F[StepT[E, F, A]]): IterateeT[E, F, A] = new IterateeT[E, F, A] {
val value = s
}
def cont[E, F[_] : Applicative, A](c: Input[E] => IterateeT[E, F, A]): IterateeT[E, F, A] =
StepT.scont(c).pointI
def done[E, F[_] : Applicative, A](d: => A, r: => Input[E]): IterateeT[E, F, A] =
StepT.sdone(d, r).pointI
/**
* An iteratee that writes input to the output stream as it comes in. Useful for debugging.
*/
def putStrTo[E](os: java.io.OutputStream)(implicit s: Show[E]): IterateeT[E, IO, Unit] = {
def write(e: E) = IO(os.write(s.shows(e).getBytes))
foldM(())((_: Unit, e: E) => write(e))
}
/**
* An iteratee that consumes all of the input into something that is PlusEmpty and Applicative.
*/
def consume[E, F[_]: Monad, A[_]: PlusEmpty : Applicative]: IterateeT[E, F, A[E]] = {
import scalaz.syntax.plus._
def step(e: Input[E]): IterateeT[E, F, A[E]] =
e.fold(empty = cont(step)
, el = e => cont(step).map(a => Applicative[A].point(e) <+> a)
, eof = done(PlusEmpty[A].empty, eofInput[E])
)
cont(step)
}
def collectT[E, F[_], A[_]](implicit M: Monad[F], mae: Monoid[A[E]], pointed: Applicative[A]): IterateeT[E, F, A[E]] = {
import scalaz.syntax.semigroup._
def step(e: Input[E]): IterateeT[E, F, A[E]] =
e.fold(empty = cont(step)
, el = e => cont(step).map(a => Applicative[A].point(e) |+| a)
, eof = done(Monoid[A[E]].zero, eofInput[E])
)
cont(step)
}
/**An iteratee that consumes the head of the input **/
def head[E, F[_] : Applicative]: IterateeT[E, F, Option[E]] = {
def step(s: Input[E]): IterateeT[E, F, Option[E]] =
s(empty = cont(step)
, el = e => done(Some(e), emptyInput[E])
, eof = done(None, eofInput[E])
)
cont(step)
}
def headDoneOr[E, F[_] : Monad, B](b: => B, f: E => IterateeT[E, F, B]): IterateeT[E, F, B] = {
head[E, F] flatMap {
case None => done(b, eofInput)
case Some(a) => f(a)
}
}
/**An iteratee that returns the first element of the input **/
def peek[E, F[_] : Applicative]: IterateeT[E, F, Option[E]] = {
def step(s: Input[E]): IterateeT[E, F, Option[E]]
= s(el = e => done(Some(e), s),
empty = cont(step),
eof = done(None, eofInput[E]))
cont(step)
}
def peekDoneOr[E, F[_] : Monad, B](b: => B, f: E => IterateeT[E, F, B]): IterateeT[E, F, B] = {
peek[E, F] flatMap {
case None => done(b, eofInput)
case Some(a) => f(a)
}
}
/**An iteratee that skips the first n elements of the input **/
def drop[E, F[_] : Applicative](n: Int): IterateeT[E, F, Unit] = {
def step(s: Input[E]): IterateeT[E, F, Unit] =
s(el = _ => drop(n - 1),
empty = cont(step),
eof = done((), eofInput[E]))
if (n == 0) done((), emptyInput[E])
else cont(step)
}
/**
* An iteratee that skips elements while the predicate evaluates to true.
*/
def dropWhile[E, F[_] : Applicative](p: E => Boolean): IterateeT[E, F, Unit] = {
def step(s: Input[E]): IterateeT[E, F, Unit] =
s(el = e => if (p(e)) dropWhile(p) else done((), s),
empty = cont(step),
eof = done((), eofInput[E]))
cont(step)
}
/**
* An iteratee that skips elements until the predicate evaluates to true.
*/
def dropUntil[E, F[_] : Applicative](p: E => Boolean): IterateeT[E, F, Unit] = dropWhile(!p(_))
def fold[E, F[_] : Applicative, A](init: A)(f: (A, E) => A): IterateeT[E, F, A] = {
def step(acc: A): Input[E] => IterateeT[E, F, A] = s =>
s(el = e => cont(step(f(acc, e))),
empty = cont(step(acc)),
eof = done(acc, eofInput[E]))
cont(step(init))
}
def foldM[E, F[_], A](init: A)(f: (A, E) => F[A])(implicit m: Monad[F]): IterateeT[E, F, A] = {
def step(acc: A): Input[E] => IterateeT[E, F, A] = s =>
s(el = e => IterateeT.IterateeTMonadTrans[E].liftM(f(acc, e)) flatMap (a => cont(step(a))),
empty = cont(step(acc)),
eof = done(acc, eofInput[E]))
cont(step(init))
}
/**
* An iteratee that counts and consumes the elements of the input
*/
def length[E, F[_] : Applicative]: IterateeT[E, F, Int] = fold(0)((a, _) => a + 1)
/**
* An iteratee that checks if the input is EOF.
*/
def isEof[E, F[_] : Applicative]: IterateeT[E, F, Boolean] = cont(in => done(in.isEof, in))
def sum[E: Monoid, F[_]: Monad]: IterateeT[E, F, E] =
foldM[E, F, E](Monoid[E].zero)((a, e) => Applicative[F].point(Monoid[E].append(a, e)))
}
//
// Type class implementation traits
//
private trait IterateeTMonad[E, F[_]] extends Monad[IterateeT[E, F, *]] {
implicit def F: Monad[F]
def point[A](a: => A) = StepT.sdone(a, emptyInput).pointI
override def map[A, B](fa: IterateeT[E, F, A])(f: A => B): IterateeT[E, F, B] = fa map f
def bind[A, B](fa: IterateeT[E, F, A])(f: A => IterateeT[E, F, B]): IterateeT[E, F, B] = fa flatMap f
}
private trait IterateeTHoist[E] extends Hoist[λ[(β[_], α) => IterateeT[E, β, α]]] {
trait IterateeTF[F[_]] {
type λ[α] = IterateeT[E, F, α]
}
override def hoist[F[_]: Monad, G[_]](f: F ~> G) = λ[IterateeTF[F]#λ ~> IterateeTF[G]#λ](_ mapI f)
def liftM[G[_] : Monad, A](ga: G[A]): IterateeT[E, G, A] =
iterateeT(Monad[G].map(ga)(sdone[E, G, A](_, emptyInput)))
implicit def apply[G[_] : Monad]: Monad[IterateeTF[G]#λ] = IterateeT.IterateeTMonad[E, G]
}
private trait IterateeTMonadIO[E, F[_]] extends MonadIO[IterateeT[E, F, *]] with IterateeTMonad[E, F] {
implicit def F: MonadIO[F]
def liftIO[A](ioa: IO[A]) = MonadTrans[λ[(α[_], β) => IterateeT[E, α, β]]].liftM(F.liftIO(ioa))
}
private trait IterateeTMonadTransT[E, H[_[_], _]] extends MonadTrans[λ[(α[_], β) => IterateeT[E, H[α, *], β]]] {
implicit def T: MonadTrans[H]
def liftM[G[_]: Monad, A](ga: G[A]): IterateeT[E, H[G, *], A] =
IterateeT.IterateeTMonadTrans[E].liftM[H[G, *], A](T.liftM(ga))(T[G])
def apply[G[_]: Monad]: Monad[IterateeT[E, H[G, *], *]] =
IterateeT.IterateeTMonad[E, H[G, *]](T[G])
}
private trait IterateeTHoistT[E, H[_[_], _]] extends Hoist[λ[(α[_], β) => IterateeT[E, H[α, *], β]]] with IterateeTMonadTransT[E, H] {
implicit def T: Hoist[H]
override def hoist[M[_]: Monad, N[_]](f: M ~> N) = λ[IterateeT[E, H[M, *], *] ~> IterateeT[E, H[N, *], *]](
_.mapI[H[N, *]](T.hoist[M, N](f))(T[M])
)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy