
javax.media.j3d.CanvasViewCache Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of j3dcore Show documentation
Show all versions of j3dcore Show documentation
3D Graphics API for the Java Platform
/*
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
package javax.media.j3d;
import java.awt.Rectangle;
import javax.vecmath.Matrix4d;
import javax.vecmath.Point2d;
import javax.vecmath.Point3d;
import javax.vecmath.Point4d;
import javax.vecmath.SingularMatrixException;
import javax.vecmath.Vector3d;
import javax.vecmath.Vector4d;
/**
* The CanvasViewCache class is used to cache all data, both API data
* and derived data, that is dependent on the Canvas3D or Screen3D.
* The final view and projection matrices are stored here.
*/
class CanvasViewCache extends Object {
// Used for debugging only
private static Object debugLock = new Object();
// The canvas associated with this canvas view cache
private Canvas3D canvas;
// Mask that indicates this CanvasViewCache view dependence info. has changed,
// and CanvasViewCache may need to recompute the final view matries.
int cvcDirtyMask = 0;
// The screen view cache associated with this canvas view cache
private ScreenViewCache screenViewCache;
// The view cache associated with this canvas view cache
private ViewCache viewCache;
// *************
// API/INPUT DATA
// *************
// The position and size of the canvas (in pixels)
private int awtCanvasX;
private int awtCanvasY;
private int awtCanvasWidth;
private int awtCanvasHeight;
// The current RenderBin used for rendering during the frame
// associated with this snapshot.
private RenderBin renderBin;
// Flag indicating whether or not stereo will be used. Computed by
// Canvas3D as: useStereo = stereoEnable && stereoAvailable
private boolean useStereo;
// Current monoscopic view policy from canvas
private int monoscopicViewPolicy;
// The manual positions of the left and right eyes in image-plate
// coordinates.
// Note that these values are only used in non-head-tracked mode
// when the view's window eyepoint policy is one of RELATIVE_TO_SCREEN
// or RELATIVE_TO_WINDOW.
private Point3d leftManualEyeInImagePlate = new Point3d();
private Point3d rightManualEyeInImagePlate = new Point3d();
// *************
// DERIVED DATA
// *************
// The width and height of the screen in meters (from ScreenViewCache)
double physicalScreenWidth;
double physicalScreenHeight;
// The width and height of the screen in pixels (from ScreenViewCache)
int screenWidth;
int screenHeight;
// Meters per pixel in the X and Y dimension (from ScreenViewCache)
double metersPerPixelX;
double metersPerPixelY;
// The position and size of the canvas (in pixels)
private int canvasX;
private int canvasY;
private int canvasWidth;
private int canvasHeight;
// Either the Canvas' or the View's monoscopicViewPolicy
private int effectiveMonoscopicViewPolicy;
// The current cached projection transforms.
private Transform3D leftProjection = new Transform3D();
private Transform3D rightProjection = new Transform3D();
private Transform3D infLeftProjection = new Transform3D();
private Transform3D infRightProjection = new Transform3D();
// The current cached viewing transforms.
private Transform3D leftVpcToEc = new Transform3D();
private Transform3D rightVpcToEc = new Transform3D();
private Transform3D infLeftVpcToEc = new Transform3D();
private Transform3D infRightVpcToEc = new Transform3D();
// The current cached inverse viewing transforms.
private Transform3D leftEcToVpc = new Transform3D();
private Transform3D rightEcToVpc = new Transform3D();
private Transform3D infLeftEcToVpc = new Transform3D();
private Transform3D infRightEcToVpc = new Transform3D();
// Arrays of Vector4d objects that represent the plane equations for
// the 6 planes in the viewing frustum in ViewPlatform coordinates.
private Vector4d[] leftFrustumPlanes = new Vector4d[6];
private Vector4d[] rightFrustumPlanes = new Vector4d[6];
// Arrays of Vector4d objects that represent the volume of viewing frustum
private Point4d leftFrustumPoints[] = new Point4d[8];
private Point4d rightFrustumPoints[] = new Point4d[8];
// Calibration matrix from Screen object for HMD mode using
// non-field-sequential stereo
private Transform3D headTrackerToLeftImagePlate = new Transform3D();
private Transform3D headTrackerToRightImagePlate = new Transform3D();
// Head tracked version of eye in imageplate
private Point3d leftTrackedEyeInImagePlate = new Point3d();
private Point3d rightTrackedEyeInImagePlate = new Point3d();
// Derived version of eye in image plate coordinates
private Point3d leftEyeInImagePlate = new Point3d();
private Point3d rightEyeInImagePlate = new Point3d();
private Point3d centerEyeInImagePlate = new Point3d();
// Derived version of nominalEyeOffsetFromNominalScreen
private double nominalEyeOffset;
// Physical window position,size and center (in image plate coordinates)
private double physicalWindowXLeft;
private double physicalWindowYBottom;
private double physicalWindowXRight;
private double physicalWindowYTop;
private double physicalWindowWidth;
private double physicalWindowHeight;
private Point3d physicalWindowCenter = new Point3d();
// Screen scale value from viewCache or from screen size.
private double screenScale;
// Window scale value that compensates for window size if
// the window resize policy is PHYSICAL_WORLD.
private double windowScale;
// ViewPlatform scale that takes coordinates from view platform
// coordinates and scales them to physical coordinates
private double viewPlatformScale;
// Various derived transforms
private Transform3D leftCcToVworld = new Transform3D();
private Transform3D rightCcToVworld = new Transform3D();
private Transform3D coexistenceToLeftPlate = new Transform3D();
private Transform3D coexistenceToRightPlate = new Transform3D();
private Transform3D vpcToCoexistence = new Transform3D();
private Transform3D vpcToLeftPlate = new Transform3D();
private Transform3D vpcToRightPlate = new Transform3D();
private Transform3D leftPlateToVpc = new Transform3D();
private Transform3D rightPlateToVpc = new Transform3D();
private Transform3D vworldToLeftPlate = new Transform3D();
private Transform3D lastVworldToLeftPlate = new Transform3D();
private Transform3D vworldToRightPlate = new Transform3D();
private Transform3D leftPlateToVworld = new Transform3D();
private Transform3D rightPlateToVworld = new Transform3D();
private Transform3D headToLeftImagePlate = new Transform3D();
private Transform3D headToRightImagePlate = new Transform3D();
private Transform3D vworldToTrackerBase = new Transform3D();
private Transform3D tempTrans = new Transform3D();
private Transform3D headToVworld = new Transform3D();
private Vector3d coexistenceCenter = new Vector3d();
// scale for transformimg clip and fog distances
private double vworldToCoexistenceScale;
private double infVworldToCoexistenceScale;
//
// Temporary matrices and vectors, so we dont generate garbage
//
private Transform3D tMat1 = new Transform3D();
private Transform3D tMat2 = new Transform3D();
private Vector3d tVec1 = new Vector3d();
private Vector3d tVec2 = new Vector3d();
private Vector3d tVec3 = new Vector3d();
private Point3d tPnt1 = new Point3d();
private Point3d tPnt2 = new Point3d();
private Matrix4d tMatrix = new Matrix4d();
/**
* The view platform transforms.
*/
private Transform3D vworldToVpc = new Transform3D();
private Transform3D vpcToVworld = new Transform3D();
private Transform3D infVworldToVpc = new Transform3D();
// This flag is used to remember the last time doInfinite flag
// is true or not.
// If this cache is updated twice, the first time in RenderBin
// updateViewCache() and the second time in Renderer with
// geometryBackground. The first time will reset the vcDirtyMask
// to 0 so that geometry background will not get updated the
// second time doComputeDerivedData() is invoked when view change.
private boolean lastDoInfinite = false;
private boolean updateLastTime = false;
void getCanvasPositionAndSize() {
if(J3dDebug.canvasViewCache >= J3dDebug.LEVEL_2) {
System.err.println("Get canvas position and size");
System.err.println("Before");
System.err.println("Canvas pos = (" + awtCanvasX + ", " +
awtCanvasY + "), size = " + awtCanvasWidth +
"x" + awtCanvasHeight);
System.err.println("After");
}
awtCanvasX = canvas.newPosition.x;
awtCanvasY = canvas.newPosition.y;
awtCanvasWidth = canvas.newSize.width;
awtCanvasHeight = canvas.newSize.height;
// The following works around problem when awt creates 0-size
// window at startup
if ((awtCanvasWidth <= 0) || (awtCanvasHeight <= 0)) {
awtCanvasWidth = 1;
awtCanvasHeight = 1;
}
if (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_1) {
System.err.println("Canvas pos = (" + awtCanvasX + ", " +
awtCanvasY + "), size = " + awtCanvasWidth +
"x" + awtCanvasHeight);
}
}
void computefrustumBBox(BoundingBox frustumBBox) {
int i;
for(i = 0; i < leftFrustumPoints.length; i++) {
if(frustumBBox.lower.x > leftFrustumPoints[i].x)
frustumBBox.lower.x = leftFrustumPoints[i].x;
if(frustumBBox.lower.y > leftFrustumPoints[i].y)
frustumBBox.lower.y = leftFrustumPoints[i].y;
if(frustumBBox.lower.z > leftFrustumPoints[i].z)
frustumBBox.lower.z = leftFrustumPoints[i].z;
if(frustumBBox.upper.x < leftFrustumPoints[i].x)
frustumBBox.upper.x = leftFrustumPoints[i].x;
if(frustumBBox.upper.y < leftFrustumPoints[i].y)
frustumBBox.upper.y = leftFrustumPoints[i].y;
if(frustumBBox.upper.z < leftFrustumPoints[i].z)
frustumBBox.upper.z = leftFrustumPoints[i].z;
}
if(useStereo) {
for(i = 0; i< rightFrustumPoints.length; i++) {
if(frustumBBox.lower.x > rightFrustumPoints[i].x)
frustumBBox.lower.x = rightFrustumPoints[i].x;
if(frustumBBox.lower.y > rightFrustumPoints[i].y)
frustumBBox.lower.y = rightFrustumPoints[i].y;
if(frustumBBox.lower.z > rightFrustumPoints[i].z)
frustumBBox.lower.z = rightFrustumPoints[i].z;
if(frustumBBox.upper.x < rightFrustumPoints[i].x)
frustumBBox.upper.x = rightFrustumPoints[i].x;
if(frustumBBox.upper.y < rightFrustumPoints[i].y)
frustumBBox.upper.y = rightFrustumPoints[i].y;
if(frustumBBox.upper.z < rightFrustumPoints[i].z)
frustumBBox.upper.z = rightFrustumPoints[i].z;
}
}
}
void copyComputedCanvasViewCache(CanvasViewCache cvc, boolean doInfinite) {
// For performance reason, only data needed by renderer are copied.
// useStereo,
// canvasWidth,
// canvasHeight,
// leftProjection,
// rightProjection,
// leftVpcToEc,
// rightVpcToEc,
// leftFrustumPlanes,
// rightFrustumPlanes,
// vpcToVworld,
// vworldToVpc.
cvc.useStereo = useStereo;
cvc.canvasWidth = canvasWidth;
cvc.canvasHeight = canvasHeight;
cvc.leftProjection.set(leftProjection);
cvc.rightProjection.set(rightProjection);
cvc.leftVpcToEc.set(leftVpcToEc) ;
cvc.rightVpcToEc.set(rightVpcToEc) ;
cvc.vpcToVworld = vpcToVworld;
cvc.vworldToVpc.set(vworldToVpc);
if (doInfinite) {
cvc.infLeftProjection.set(infLeftProjection);
cvc.infRightProjection.set(infRightProjection);
cvc.infLeftVpcToEc.set(infLeftVpcToEc) ;
cvc.infRightVpcToEc.set(infRightVpcToEc) ;
cvc.infVworldToVpc.set(infVworldToVpc);
}
for (int i = 0; i < leftFrustumPlanes.length; i++) {
cvc.leftFrustumPlanes[i].x = leftFrustumPlanes[i].x;
cvc.leftFrustumPlanes[i].y = leftFrustumPlanes[i].y;
cvc.leftFrustumPlanes[i].z = leftFrustumPlanes[i].z;
cvc.leftFrustumPlanes[i].w = leftFrustumPlanes[i].w;
cvc.rightFrustumPlanes[i].x = rightFrustumPlanes[i].x;
cvc.rightFrustumPlanes[i].y = rightFrustumPlanes[i].y;
cvc.rightFrustumPlanes[i].z = rightFrustumPlanes[i].z;
cvc.rightFrustumPlanes[i].w = rightFrustumPlanes[i].w;
}
}
/**
* Take snapshot of all per-canvas API parameters and input values.
* NOTE: This is probably not needed, but we'll do it for symmetry
* with the ScreenViewCache and ViewCache objects.
*/
synchronized void snapshot(boolean computeFrustum) {
// Issue 109 : determine the the correct index to use -- either the
// Renderer or RenderBin
int dirtyIndex = computeFrustum ?
Canvas3D.RENDER_BIN_DIRTY_IDX : Canvas3D.RENDERER_DIRTY_IDX;
synchronized (canvas.dirtyMaskLock) {
// Issue 109 : read/clear the dirty bits for the correct index
cvcDirtyMask = canvas.cvDirtyMask[dirtyIndex];
canvas.cvDirtyMask[dirtyIndex] = 0;
}
useStereo = canvas.useStereo;
monoscopicViewPolicy = canvas.monoscopicViewPolicy;
leftManualEyeInImagePlate.set(canvas.leftManualEyeInImagePlate);
rightManualEyeInImagePlate.set(canvas.rightManualEyeInImagePlate);
if(( cvcDirtyMask & Canvas3D.MOVED_OR_RESIZED_DIRTY) != 0) {
getCanvasPositionAndSize();
}
renderBin = canvas.view.renderBin;
}
/**
* Compute derived data using the snapshot of the per-canvas,
* per-screen and per-view data.
*/
synchronized void computeDerivedData(boolean currentFlag,
CanvasViewCache cvc, BoundingBox frustumBBox, boolean doInfinite) {
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_1)) {
synchronized(debugLock) {
System.err.println("------------------------------");
doComputeDerivedData(currentFlag,cvc,frustumBBox,doInfinite);
}
}
else {
doComputeDerivedData(currentFlag,cvc,frustumBBox,doInfinite);
}
}
/**
* Compute derived data using the snapshot of the per-canvas,
* per-screen and per-view data. Caller must synchronize before
* calling this method.
*/
private void doComputeDerivedData(boolean currentFlag,
CanvasViewCache cvc, BoundingBox frustumBBox, boolean doInfinite) {
// Issue 109 : determine the the correct index to use -- either the
// Renderer or RenderBin
int dirtyIndex = (frustumBBox != null) ?
Canvas3D.RENDER_BIN_DIRTY_IDX : Canvas3D.RENDERER_DIRTY_IDX;
int scrvcDirtyMask;
// Issue 109 : read/clear the dirty bits for the correct index
synchronized (screenViewCache) {
scrvcDirtyMask = screenViewCache.scrvcDirtyMask[dirtyIndex];
// reset screen view dirty mask if canvas is offScreen. Note:
// there is only one canvas per offscreen, so it is ok to
// do the reset here.
if (canvas.offScreen) {
screenViewCache.scrvcDirtyMask[dirtyIndex] = 0;
}
}
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_2)) {
if(cvcDirtyMask != 0)
System.err.println("cvcDirtyMask : " + cvcDirtyMask);
if(scrvcDirtyMask != 0)
System.err.println("scrvcDirtyMask : "+ scrvcDirtyMask);
if(viewCache.vcDirtyMask != 0)
System.err.println("vcDirtyMask : " + viewCache.vcDirtyMask);
}
// NOTE: This fix is only fixing the symptoms, but not the
// root of the bug. We shouldn't have to check for null here.
if(viewCache.vpRetained == null) {
System.err.println("CanvasViewCache : Error! viewCache.vpRetained is null");
return;
}
// This flag is use to force a computation when a ViewPlatformTransform
// is detected. No sync. needed. We're doing a read of t/f.
// XXXX: Peeking at the dirty flag is a hack. Need to revisit this.
boolean vprNotDirty = (viewCache.vpRetained.vprDirtyMask == 0);
// Issue 131: If not manual, it has to be considered as an onscreen canvas.
if(!canvas.manualRendering &&
(vprNotDirty) &&
(cvcDirtyMask == 0) &&
(scrvcDirtyMask == 0) &&
(viewCache.vcDirtyMask == 0) &&
!(updateLastTime && (doInfinite != lastDoInfinite))) {
if(frustumBBox != null)
computefrustumBBox(frustumBBox);
// Copy the computed data into cvc.
if(cvc != null) {
copyComputedCanvasViewCache(cvc, doInfinite);
}
lastDoInfinite = doInfinite;
updateLastTime = false;
return;
}
lastDoInfinite = doInfinite;
updateLastTime = true;
if(currentFlag) {
vpcToVworld.set(viewCache.vpRetained.getCurrentLocalToVworld(null));
}
else {
vpcToVworld.set(viewCache.vpRetained.getLastLocalToVworld(null));
}
// System.err.println("vpcToVworld is \n" + vpcToVworld);
try {
vworldToVpc.invert(vpcToVworld);
}
catch (SingularMatrixException e) {
vworldToVpc.setIdentity();
//System.err.println("SingularMatrixException encountered when doing vworldToVpc invert");
}
if (doInfinite) {
vworldToVpc.getRotation(infVworldToVpc);
}
// Compute global flags
if (monoscopicViewPolicy == View.CYCLOPEAN_EYE_VIEW)
effectiveMonoscopicViewPolicy = viewCache.monoscopicViewPolicy;
else
effectiveMonoscopicViewPolicy = monoscopicViewPolicy;
// Recompute info about current canvas window
computeCanvasInfo();
// Compute coexistence center (in plate coordinates)
computeCoexistenceCenter();
// Get Eye position in image-plate coordinates
cacheEyePosition();
// Compute VPC to COE and COE to PLATE transforms
computeVpcToCoexistence();
computeCoexistenceToPlate();
// Compute view and projection matrices
computeView(doInfinite);
computePlateToVworld();
if (!currentFlag) {
// save the result for use in RasterRetained computeWinCoord
lastVworldToLeftPlate.set(vworldToLeftPlate);
}
computeHeadToVworld();
if (frustumBBox != null)
computefrustumBBox(frustumBBox);
// Issue 109: cvc should *always* be null
assert cvc == null;
if(cvc != null)
copyComputedCanvasViewCache(cvc, doInfinite);
canvas.canvasDirty |= Canvas3D.VIEW_MATRIX_DIRTY;
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_1)) {
// Print some data :
System.err.println("useStereo = " + useStereo);
System.err.println("leftProjection:\n" + leftProjection);
System.err.println("rightProjection:\n " + rightProjection);
System.err.println("leftVpcToEc:\n" + leftVpcToEc);
System.err.println("rightVpcToEc:\n" + rightVpcToEc);
System.err.println("vpcToVworld:\n" + vpcToVworld);
System.err.println("vworldToVpc:\n" + vworldToVpc);
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_2)) {
int i;
for (i = 0; i < leftFrustumPlanes.length; i++) {
System.err.println("leftFrustumPlanes " + i + " is " +
leftFrustumPlanes[i]);
}
for (i = 0; i < rightFrustumPlanes.length; i++) {
System.err.println("rightFrustumPlanes " + i + " is " +
rightFrustumPlanes[i]);
}
}
}
}
private void computeCanvasInfo() {
// Copy the screen width and height info into derived parameters
physicalScreenWidth = screenViewCache.physicalScreenWidth;
physicalScreenHeight = screenViewCache.physicalScreenHeight;
screenWidth = screenViewCache.screenWidth;
screenHeight = screenViewCache.screenHeight;
metersPerPixelX = screenViewCache.metersPerPixelX;
metersPerPixelY = screenViewCache.metersPerPixelY;
// If a multi-screen virtual device (e.g. Xinerama) is being used,
// then awtCanvasX and awtCanvasY are relative to the origin of that
// virtual screen. Subtract the origin of the physical screen to
// compute the origin in physical (image plate) coordinates.
Rectangle screenBounds = canvas.graphicsConfiguration.getBounds();
canvasX = awtCanvasX - screenBounds.x;
canvasY = awtCanvasY - screenBounds.y;
// Use awtCanvasWidth and awtCanvasHeight as reported.
canvasWidth = awtCanvasWidth;
canvasHeight = awtCanvasHeight;
// Convert the window system ``pixel'' coordinate location and size
// of the window into physical units (meters) and coordinate system.
// Window width and Height in meters
physicalWindowWidth = canvasWidth * metersPerPixelX;
physicalWindowHeight = canvasHeight * metersPerPixelY;
// Compute the 4 corners of the window in physical units
physicalWindowXLeft = metersPerPixelX *
(double) canvasX;
physicalWindowYBottom = metersPerPixelY *
(double)(screenHeight - canvasHeight - canvasY);
physicalWindowXRight = physicalWindowXLeft + physicalWindowWidth;
physicalWindowYTop = physicalWindowYBottom + physicalWindowHeight;
// Cache the physical location of the center of the window
physicalWindowCenter.x =
physicalWindowXLeft + physicalWindowWidth / 2.0;
physicalWindowCenter.y =
physicalWindowYBottom + physicalWindowHeight / 2.0;
physicalWindowCenter.z = 0.0;
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_2)) {
System.err.println("Canvas pos = (" + awtCanvasX + ", " +
awtCanvasY + "), size = " + awtCanvasWidth +
"x" + awtCanvasHeight);
System.err.println("Window LL corner (in plate coordinates): " +
"(" + physicalWindowXLeft + "," + physicalWindowYBottom + ")");
System.err.println("Window size (in plate coordinates): " +
"(" + physicalWindowWidth + "," + physicalWindowHeight + ")");
System.err.println("Window center (in plate coordinates): " +
physicalWindowCenter);
System.err.println();
}
// Compute the view platform scale. This combines
// the screen scale and the window scale.
computeViewPlatformScale();
if (!viewCache.compatibilityModeEnable &&
viewCache.viewPolicy == View.HMD_VIEW) {
if (!useStereo) {
switch(effectiveMonoscopicViewPolicy) {
case View.CYCLOPEAN_EYE_VIEW:
if(J3dDebug.devPhase) {
System.err.println("CanvasViewCache : Should never reach here.\n" +
"HMD_VIEW with CYCLOPEAN_EYE_VIEW is not allowed");
}
break;
case View.LEFT_EYE_VIEW:
headTrackerToLeftImagePlate.set(screenViewCache.
headTrackerToLeftImagePlate);
break;
case View.RIGHT_EYE_VIEW:
headTrackerToLeftImagePlate.set(screenViewCache.
headTrackerToRightImagePlate);
break;
}
}
else {
headTrackerToLeftImagePlate.set(screenViewCache.
headTrackerToLeftImagePlate);
headTrackerToRightImagePlate.set(screenViewCache.
headTrackerToRightImagePlate);
}
}
}
// Routine to compute the center of coexistence coordinates in
// imageplate coordinates. Also compute the scale from Vpc
private void computeViewPlatformScale() {
windowScale = screenScale = 1.0;
if (!viewCache.compatibilityModeEnable) {
switch (viewCache.screenScalePolicy) {
case View.SCALE_SCREEN_SIZE:
screenScale = physicalScreenWidth / 2.0;
break;
case View.SCALE_EXPLICIT:
screenScale = viewCache.screenScale;
break;
}
if (viewCache.windowResizePolicy == View.PHYSICAL_WORLD) {
windowScale = physicalWindowWidth / physicalScreenWidth;
}
}
viewPlatformScale = windowScale * screenScale;
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_2)) {
System.err.println("viewCache.windowResizePolicy = " +
viewCache.windowResizePolicy);
System.err.println("physicalWindowWidth = " + physicalWindowWidth);
System.err.println("physicalScreenWidth = " + physicalScreenWidth);
System.err.println("windowScale = " + windowScale);
System.err.println("screenScale = " + screenScale);
System.err.println("viewPlatformScale = " + viewPlatformScale);
}
}
private void cacheEyePosFixedField() {
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_1))
System.err.println("cacheEyePosFixedField:");
// y is always the window center
rightEyeInImagePlate.y =
leftEyeInImagePlate.y =
physicalWindowCenter.y;
if (!useStereo) {
switch(effectiveMonoscopicViewPolicy) {
case View.CYCLOPEAN_EYE_VIEW:
leftEyeInImagePlate.x = physicalWindowCenter.x;
break;
case View.LEFT_EYE_VIEW:
leftEyeInImagePlate.x =
physicalWindowCenter.x + viewCache.leftEyePosInHead.x;
break;
case View.RIGHT_EYE_VIEW:
leftEyeInImagePlate.x =
physicalWindowCenter.x + viewCache.rightEyePosInHead.x;
break;
}
// Set right as well just in case
rightEyeInImagePlate.x = leftEyeInImagePlate.x;
}
else {
leftEyeInImagePlate.x =
physicalWindowCenter.x + viewCache.leftEyePosInHead.x;
rightEyeInImagePlate.x =
physicalWindowCenter.x + viewCache.rightEyePosInHead.x;
}
//
// Derive the z distance by constraining the field of view of the
// window width to be constant.
//
rightEyeInImagePlate.z =
leftEyeInImagePlate.z =
physicalWindowWidth /
(2.0 * Math.tan(viewCache.fieldOfView / 2.0));
// Denote that eyes-in-ImagePlate fields have changed so that
// these new values can be sent to the AudioDevice
if (this.viewCache.view.soundScheduler != null)
this.viewCache.view.soundScheduler.setListenerFlag(
SoundScheduler.EYE_POSITIONS_CHANGED);
}
/**
* Case of view eye position contrainted to center of window, but
* with z distance from plate eye pos.
*/
private void cacheEyePosWindowRelative() {
if ((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_1))
System.err.println("cacheEyePosWindowRelative:");
// y is always the window center
rightEyeInImagePlate.y =
leftEyeInImagePlate.y =
physicalWindowCenter.y;
// z is always from the existing eye pos
rightEyeInImagePlate.z =
leftEyeInImagePlate.z =
leftManualEyeInImagePlate.z;
if (!useStereo) {
switch(effectiveMonoscopicViewPolicy) {
case View.CYCLOPEAN_EYE_VIEW:
leftEyeInImagePlate.x =
physicalWindowCenter.x;
break;
case View.LEFT_EYE_VIEW:
leftEyeInImagePlate.x =
physicalWindowCenter.x +
viewCache.leftEyePosInHead.x;
break;
case View.RIGHT_EYE_VIEW:
leftEyeInImagePlate.x =
physicalWindowCenter.x +
viewCache.rightEyePosInHead.x;
break;
}
// Set right as well just in case
rightEyeInImagePlate.x =
leftEyeInImagePlate.x;
}
else {
leftEyeInImagePlate.x =
physicalWindowCenter.x +
viewCache.leftEyePosInHead.x;
rightEyeInImagePlate.x =
physicalWindowCenter.x +
viewCache.rightEyePosInHead.x;
// Right z gets its own value
rightEyeInImagePlate.z =
rightManualEyeInImagePlate.z;
}
// Denote that eyes-in-ImagePlate fields have changed so that
// these new values can be sent to the AudioDevice
if (this.viewCache.view.soundScheduler != null)
this.viewCache.view.soundScheduler.setListenerFlag(
SoundScheduler.EYE_POSITIONS_CHANGED);
}
/**
* Common routine used when head tracking and when using manual
* relative_to_screen eyepoint policy.
*/
private void cacheEyePosScreenRelative(Point3d leftEye, Point3d rightEye) {
if ((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_1))
System.err.println("cacheEyePosScreenRelative:");
if (!useStereo) {
switch(effectiveMonoscopicViewPolicy) {
case View.CYCLOPEAN_EYE_VIEW:
leftEyeInImagePlate.x = (leftEye.x + rightEye.x) / 2.0;
leftEyeInImagePlate.y = (leftEye.y + rightEye.y) / 2.0;
leftEyeInImagePlate.z = (leftEye.z + rightEye.z) / 2.0;
break;
case View.LEFT_EYE_VIEW:
leftEyeInImagePlate.set(leftEye);
break;
case View.RIGHT_EYE_VIEW:
leftEyeInImagePlate.set(rightEye);
break;
}
// Set right as well just in case
rightEyeInImagePlate.set(leftEyeInImagePlate);
}
else {
leftEyeInImagePlate.set(leftEye);
rightEyeInImagePlate.set(rightEye);
}
// Denote that eyes-in-ImagePlate fields have changed so that
// these new values can be sent to the AudioDevice
if (this.viewCache.view.soundScheduler != null)
this.viewCache.view.soundScheduler.setListenerFlag(
SoundScheduler.EYE_POSITIONS_CHANGED);
}
private void cacheEyePosCoexistenceRelative(Point3d leftManualEyeInCoexistence,
Point3d rightManualEyeInCoexistence) {
tPnt1.set(leftManualEyeInCoexistence);
viewCache.coexistenceToTrackerBase.transform(tPnt1);
screenViewCache.trackerBaseToImagePlate.transform(tPnt1);
tPnt1.add(coexistenceCenter);
tPnt2.set(rightManualEyeInCoexistence);
viewCache.coexistenceToTrackerBase.transform(tPnt2);
screenViewCache.trackerBaseToImagePlate.transform(tPnt2);
tPnt2.add(coexistenceCenter);
cacheEyePosScreenRelative(tPnt1, tPnt2);
}
/**
* Compute the head-tracked eye position for the right and
* left eyes.
*/
private void computeTrackedEyePosition() {
if ((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_2)) {
System.err.println("computeTrackedEyePosition:");
System.err.println("viewCache.headTrackerToTrackerBase:");
System.err.println(viewCache.headTrackerToTrackerBase);
System.err.println("viewCache.headToHeadTracker:");
System.err.println(viewCache.headToHeadTracker);
}
if (viewCache.viewPolicy != View.HMD_VIEW) {
if ((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_2)) {
System.err.println("screenViewCache.trackerBaseToImagePlate:");
System.err.println(screenViewCache.trackerBaseToImagePlate);
}
headToLeftImagePlate.set(coexistenceCenter);
headToLeftImagePlate.mul(screenViewCache.trackerBaseToImagePlate);
headToLeftImagePlate.mul(viewCache.headTrackerToTrackerBase);
headToLeftImagePlate.mul(viewCache.headToHeadTracker);
headToLeftImagePlate.transform(viewCache.leftEyePosInHead,
leftTrackedEyeInImagePlate);
headToLeftImagePlate.transform(viewCache.rightEyePosInHead,
rightTrackedEyeInImagePlate);
}
else {
if ((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_2)) {
System.err.println("headTrackerToLeftImagePlate:");
System.err.println(headTrackerToLeftImagePlate);
}
headToLeftImagePlate.mul(headTrackerToLeftImagePlate,
viewCache.headToHeadTracker);
headToLeftImagePlate.transform(viewCache.leftEyePosInHead,
leftTrackedEyeInImagePlate);
if(useStereo) {
headToRightImagePlate.mul(headTrackerToRightImagePlate,
viewCache.headToHeadTracker);
headToRightImagePlate.transform(viewCache.rightEyePosInHead,
rightTrackedEyeInImagePlate);
}
else { // HMD_VIEW with no stereo.
headToLeftImagePlate.transform(viewCache.rightEyePosInHead,
rightTrackedEyeInImagePlate);
}
}
if ((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_2)) {
System.err.println("headToLeftImagePlate:");
System.err.println(headToLeftImagePlate);
System.err.println("headToRightImagePlate:");
System.err.println(headToRightImagePlate);
}
}
/**
* Routine to cache the current eye position in image plate
* coordinates.
*/
private void cacheEyePosition() {
if (viewCache.compatibilityModeEnable) {
// XXXX: Compute compatibility mode eye position in ImagePlate???
cacheEyePosScreenRelative(leftManualEyeInImagePlate,
rightManualEyeInImagePlate);
}
else if (viewCache.getDoHeadTracking()) {
computeTrackedEyePosition();
cacheEyePosScreenRelative(leftTrackedEyeInImagePlate,
rightTrackedEyeInImagePlate);
}
else {
switch (viewCache.windowEyepointPolicy) {
case View.RELATIVE_TO_FIELD_OF_VIEW:
cacheEyePosFixedField();
break;
case View.RELATIVE_TO_WINDOW:
cacheEyePosWindowRelative();
break;
case View.RELATIVE_TO_SCREEN:
cacheEyePosScreenRelative(leftManualEyeInImagePlate,
rightManualEyeInImagePlate);
break;
case View.RELATIVE_TO_COEXISTENCE:
cacheEyePosCoexistenceRelative(viewCache.leftManualEyeInCoexistence,
viewCache.rightManualEyeInCoexistence);
break;
}
}
// Compute center eye
centerEyeInImagePlate.add(leftEyeInImagePlate, rightEyeInImagePlate);
centerEyeInImagePlate.scale(0.5);
// Compute derived value of nominalEyeOffsetFromNominalScreen
if (viewCache.windowEyepointPolicy == View.RELATIVE_TO_FIELD_OF_VIEW)
nominalEyeOffset = centerEyeInImagePlate.z;
else
nominalEyeOffset = viewCache.nominalEyeOffsetFromNominalScreen;
if ((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_1)) {
System.err.println("leftEyeInImagePlate = " +
leftEyeInImagePlate);
System.err.println("rightEyeInImagePlate = " +
rightEyeInImagePlate);
System.err.println("centerEyeInImagePlate = " +
centerEyeInImagePlate);
System.err.println("nominalEyeOffset = " +
nominalEyeOffset);
System.err.println();
}
}
private void computePlateToVworld() {
if (viewCache.compatibilityModeEnable) {
// XXXX: implement this correctly for compat mode
leftPlateToVworld.setIdentity();
vworldToLeftPlate.setIdentity();
}
else {
try {
leftPlateToVpc.invert(vpcToLeftPlate);
}
catch (SingularMatrixException e) {
leftPlateToVpc.setIdentity();
/*
System.err.println("SingularMatrixException encountered when doing" +
" leftPlateToVpc invert");
*/
}
leftPlateToVworld.mul(vpcToVworld, leftPlateToVpc);
vworldToLeftPlate.mul(vpcToLeftPlate, vworldToVpc);
if(useStereo) {
try {
rightPlateToVpc.invert(vpcToRightPlate);
}
catch (SingularMatrixException e) {
rightPlateToVpc.setIdentity();
/*
System.err.println("SingularMatrixException encountered when doing" +
" rightPlateToVpc invert");
*/
}
rightPlateToVworld.mul(vpcToVworld, rightPlateToVpc);
vworldToRightPlate.mul(vpcToRightPlate, vworldToVpc);
}
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_2)) {
System.err.println("vpcToVworld:");
System.err.println(vpcToVworld);
System.err.println("vpcToLeftPlate:");
System.err.println(vpcToLeftPlate);
if(useStereo) {
System.err.println("vpcToRightPlate:");
System.err.println(vpcToRightPlate);
}
}
}
// Denote that eyes-in-ImagePlate fields have changed so that
// these new values can be sent to the AudioDevice
if (this.viewCache.view.soundScheduler != null)
this.viewCache.view.soundScheduler.setListenerFlag(
SoundScheduler.IMAGE_PLATE_TO_VWORLD_CHANGED);
}
private void computeHeadToVworld() {
// Concatenate headToLeftImagePlate with leftPlateToVworld
if (viewCache.compatibilityModeEnable) {
// XXXX: implement this correctly for compat mode
headToVworld.setIdentity();
}
else {
headToVworld.mul(leftPlateToVworld, headToLeftImagePlate);
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_2)) {
System.err.println("leftPlateToVworld:");
System.err.println(leftPlateToVworld);
System.err.println("headToLeftImagePlate:");
System.err.println(headToLeftImagePlate);
System.err.println("...gives -> headToVworld:");
System.err.println(headToVworld);
}
}
// Denote that eyes-in-ImagePlate fields have changed so that
// these new values can be sent to the AudioDevice
if (this.viewCache.view.soundScheduler != null)
this.viewCache.view.soundScheduler.setListenerFlag(
SoundScheduler.HEAD_TO_VWORLD_CHANGED);
}
private void computeVpcToCoexistence() {
// Create a transform with the view platform to coexistence scale
tMat1.set(viewPlatformScale);
// XXXX: Is this really correct to ignore HMD?
if (viewCache.viewPolicy != View.HMD_VIEW) {
switch (viewCache.coexistenceCenterInPworldPolicy) {
case View.NOMINAL_SCREEN :
switch (viewCache.viewAttachPolicy) {
case View.NOMINAL_SCREEN:
tMat2.setIdentity();
break;
case View.NOMINAL_HEAD:
tVec1.set(0.0, 0.0, nominalEyeOffset);
tMat2.set(tVec1);
break;
case View.NOMINAL_FEET:
tVec1.set(0.0, -viewCache.nominalEyeHeightFromGround,
nominalEyeOffset);
tMat2.set(tVec1);
break;
}
break;
case View.NOMINAL_HEAD :
switch (viewCache.viewAttachPolicy) {
case View.NOMINAL_SCREEN:
tVec1.set(0.0, 0.0, -nominalEyeOffset);
tMat2.set(tVec1);
break;
case View.NOMINAL_HEAD:
tMat2.setIdentity();
break;
case View.NOMINAL_FEET:
tVec1.set(0.0, -viewCache.nominalEyeHeightFromGround,
0.0);
tMat2.set(tVec1);
break;
}
break;
case View.NOMINAL_FEET:
switch (viewCache.viewAttachPolicy) {
case View.NOMINAL_SCREEN:
tVec1.set(0.0,
viewCache.nominalEyeHeightFromGround, -nominalEyeOffset);
tMat2.set(tVec1);
break;
case View.NOMINAL_HEAD:
tVec1.set(0.0, viewCache.nominalEyeHeightFromGround,
0.0);
tMat2.set(tVec1);
break;
case View.NOMINAL_FEET:
tMat2.setIdentity();
break;
}
break;
}
vpcToCoexistence.mul(tMat2, tMat1);
}
else {
vpcToCoexistence.set(tMat1);
}
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_2)) {
System.err.println("vpcToCoexistence:");
System.err.println(vpcToCoexistence);
}
}
private void computeCoexistenceCenter() {
if ((!viewCache.compatibilityModeEnable) &&
(viewCache.viewPolicy != View.HMD_VIEW) &&
(viewCache.coexistenceCenteringEnable) &&
(viewCache.coexistenceCenterInPworldPolicy == View.NOMINAL_SCREEN)) {
// Compute the coexistence center in image plate coordinates
// Image plate cordinates have their orgin in the lower
// left hand corner of the CRT visiable raster.
// The nominal coexistence center is at the *center* of
// targeted area: either the window or screen, depending
// on policy.
if (viewCache.windowMovementPolicy == View.VIRTUAL_WORLD) {
coexistenceCenter.x = physicalScreenWidth / 2.0;
coexistenceCenter.y = physicalScreenHeight / 2.0;
coexistenceCenter.z = 0.0;
}
else { // windowMovementPolicy == PHYSICAL_WORLD
coexistenceCenter.x = physicalWindowCenter.x;
coexistenceCenter.y = physicalWindowCenter.y;
coexistenceCenter.z = 0.0;
}
}
else {
coexistenceCenter.set(0.0, 0.0, 0.0);
}
if(J3dDebug.devPhase) {
if (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_1) {
System.err.println("coexistenceCenter = " + coexistenceCenter);
}
}
}
private void computeCoexistenceToPlate() {
if (viewCache.compatibilityModeEnable) {
// XXXX: implement this correctly
coexistenceToLeftPlate.setIdentity();
return;
}
if (viewCache.viewPolicy != View.HMD_VIEW) {
coexistenceToLeftPlate.set(coexistenceCenter);
coexistenceToLeftPlate.mul(screenViewCache.trackerBaseToImagePlate);
coexistenceToLeftPlate.mul(viewCache.coexistenceToTrackerBase);
if(useStereo) {
coexistenceToRightPlate.set(coexistenceToLeftPlate);
}
}
else {
coexistenceToLeftPlate.mul(headTrackerToLeftImagePlate,
viewCache.trackerBaseToHeadTracker);
coexistenceToLeftPlate.mul(viewCache.coexistenceToTrackerBase);
if(useStereo) {
coexistenceToRightPlate.mul(headTrackerToRightImagePlate,
viewCache.trackerBaseToHeadTracker);
coexistenceToRightPlate.mul(viewCache.coexistenceToTrackerBase);
}
}
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_2)) {
System.err.println("coexistenceToLeftPlate:");
System.err.println(coexistenceToLeftPlate);
if(useStereo) {
System.err.println("coexistenceToRightPlate:");
System.err.println(coexistenceToRightPlate);
}
}
}
/**
* Computes the viewing matrices.
*
* computeView computes the following:
*
*
* left (& right) eye viewing matrices (only left is valid for mono view)
*
*
* This call works for both fixed screen and HMD displays.
*/
private void computeView(boolean doInfinite) {
int backClipPolicy;
double Fl, Fr, B, scale, backClipDistance;
// compute scale used for transforming clip and fog distances
vworldToCoexistenceScale = vworldToVpc.getDistanceScale()
* vpcToCoexistence.getDistanceScale();
if(doInfinite) {
infVworldToCoexistenceScale = infVworldToVpc.getDistanceScale()
* vpcToCoexistence.getDistanceScale();
}
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_2)) {
System.err.println("vworldToCoexistenceScale = " +
vworldToCoexistenceScale);
}
// compute coexistenceToVworld transform -- dirty bit candidate!!
tempTrans.mul(viewCache.coexistenceToTrackerBase, vpcToCoexistence);
vworldToTrackerBase.mul(tempTrans, vworldToVpc);
// If we are in compatibility mode, compute the view and
// projection matrices accordingly
if (viewCache.compatibilityModeEnable) {
leftProjection.set(viewCache.compatLeftProjection);
leftVpcToEc.set(viewCache.compatVpcToEc);
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_1)) {
System.err.println("Left projection and view matrices");
System.err.println("ecToCc (leftProjection) :");
System.err.println(leftProjection);
System.err.println("vpcToEc:");
System.err.println(leftVpcToEc);
}
computeFrustumPlanes(leftProjection, leftVpcToEc,
leftFrustumPlanes, leftFrustumPoints,
leftCcToVworld);
if(useStereo) {
rightProjection.set(viewCache.compatRightProjection);
rightVpcToEc.set(viewCache.compatVpcToEc);
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_1)) {
System.err.println("Right projection and view matrices");
System.err.println("ecToCc:");
System.err.println("vpcToEc:");
System.err.println(rightVpcToEc);
}
computeFrustumPlanes(rightProjection, rightVpcToEc,
rightFrustumPlanes, rightFrustumPoints,
rightCcToVworld);
}
return;
}
//
// The clipping plane distances are set from the internal policy.
//
// Note that the plane distance follows the standard Z axis
// convention, e.g. negative numbers further away.
// Note that for policy from eye, the distance is negative in
// the direction of z in front of the eye.
// Note that for policy from screen, the distance is negative for
// locations behind the screen, and positive in front.
//
// The distance attributes are measured either in physical (plate)
// units, or vworld units.
//
// Compute scale factor for front clip plane computation
if (viewCache.frontClipPolicy == View.VIRTUAL_EYE ||
viewCache.frontClipPolicy == View.VIRTUAL_SCREEN) {
scale = vworldToCoexistenceScale;
}
else {
scale = windowScale;
}
// Set left and right front clipping plane distances.
if(viewCache.frontClipPolicy == View.PHYSICAL_EYE ||
viewCache.frontClipPolicy == View.VIRTUAL_EYE) {
Fl = leftEyeInImagePlate.z +
scale * -viewCache.frontClipDistance;
Fr = rightEyeInImagePlate.z +
scale * -viewCache.frontClipDistance;
}
else {
Fl = scale * -viewCache.frontClipDistance;
Fr = scale * -viewCache.frontClipDistance;
}
// if there is an active clip node, use it and ignore the view's
// backclip
if ((renderBin != null) && (renderBin.backClipActive)) {
backClipPolicy = View.VIRTUAL_EYE;
backClipDistance = renderBin.backClipDistanceInVworld;
} else {
backClipPolicy = viewCache.backClipPolicy;
backClipDistance = viewCache.backClipDistance;
}
// Compute scale factor for rear clip plane computation
if (backClipPolicy == View.VIRTUAL_EYE ||
backClipPolicy == View.VIRTUAL_SCREEN) {
scale = vworldToCoexistenceScale;
}
else {
scale = windowScale;
}
// Set left and right rear clipping plane distnaces.
if(backClipPolicy == View.PHYSICAL_EYE ||
backClipPolicy == View.VIRTUAL_EYE) {
// Yes, left for both left and right rear.
B = leftEyeInImagePlate.z +
scale * -backClipDistance;
}
else {
B = scale * -backClipDistance;
}
// XXXX: Can optimize for HMD case.
if (true /*viewCache.viewPolicy != View.HMD_VIEW*/) {
// Call buildProjView to build the projection and view matrices.
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_2)) {
System.err.println("Left projection and view matrices");
System.err.println("Fl " + Fl + " B " + B);
System.err.println("leftEyeInImagePlate\n" + leftEyeInImagePlate);
System.err.println("Before : leftProjection\n" + leftProjection);
System.err.println("Before leftVpcToEc\n" + leftVpcToEc);
}
buildProjView(leftEyeInImagePlate, coexistenceToLeftPlate,
vpcToLeftPlate, Fl, B, leftProjection, leftVpcToEc, false);
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_2)) {
System.err.println("After : leftProjection\n" + leftProjection);
System.err.println("After leftVpcToEc\n" + leftVpcToEc);
}
computeFrustumPlanes(leftProjection, leftVpcToEc,
leftFrustumPlanes, leftFrustumPoints,
leftCcToVworld);
if(useStereo) {
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_2))
System.err.println("Right projection and view matrices");
buildProjView(rightEyeInImagePlate, coexistenceToRightPlate,
vpcToRightPlate, Fr, B, rightProjection,
rightVpcToEc, false);
computeFrustumPlanes(rightProjection, rightVpcToEc,
rightFrustumPlanes, rightFrustumPoints,
rightCcToVworld);
}
//
// Now to compute the left (& right) eye (and infinite)
// viewing matrices.
if(doInfinite) {
// Call buildProjView separately for infinite view
buildProjView(leftEyeInImagePlate, coexistenceToLeftPlate,
vpcToLeftPlate, leftEyeInImagePlate.z - 0.05,
leftEyeInImagePlate.z - 1.5,
infLeftProjection, infLeftVpcToEc, true);
if(useStereo) {
buildProjView(rightEyeInImagePlate, coexistenceToRightPlate,
vpcToRightPlate, rightEyeInImagePlate.z - 0.05,
rightEyeInImagePlate.z - 1.5,
infRightProjection, infRightVpcToEc, true);
}
}
}
// XXXX: The following code has never been ported
// else {
// Point3d cen_eye;
//
// // HMD case. Just concatenate the approprate matrices together.
// // Additional work just for now
//
// compute_lr_plate_to_cc( &cen_eye, Fl, B, 0, &vb, 0);
//
// if(useStereo) {
// mat_mul_dpt(&right_eye_pos_in_head,
// head_to_right_plate, &cen_eye);
// compute_lr_plate_to_cc( &cen_eye, Fr, B,
// 1, &vb, 0);
// }
//
// // Make sure that coexistence_to_plate is current.
// // (It is usually constant for fixed plates, always varies for HMDs.)
// // For HMD case, computes finial matrices that will be used.
// //
// computeCoexistenceToPlate();
// }
}
/**
* Debugging routine to analyze the projection matrix.
*/
private void analyzeProjection(Transform3D p, double xMax) {
if (viewCache.projectionPolicy == View.PARALLEL_PROJECTION)
System.err.println("PARALLEL_PROJECTION =");
else
System.err.println("PERSPECTIVE_PROJECTION =");
System.err.println(p);
double projectionPlaneZ = ((p.mat[0] * xMax + p.mat[3] - p.mat[15]) /
(p.mat[14] - p.mat[2]));
System.err.println("projection plane at z = " + projectionPlaneZ);
}
/**
* buildProjView creates a projection and viewing matrix.
*
* Inputs:
* ep : eye point, in plate coordinates
* coe2Plate : matrix from coexistence to image plate.
* F, B : front, back clipping planes, in plate coordinates
* doInfinite : flag to indicate ``at infinity'' view desired
*
* Output:
* vpc2Plate : matric from vpc to image plate.
* ecToCc : projection matrix from Eye Coordinates (EC)
* to Clipping Coordinates (CC)
* vpcToEc : view matrix from ViewPlatform Coordinates (VPC)
* to Eye Coordinates (EC)
*/
private void buildProjView(Point3d ep,
Transform3D coe2Plate,
Transform3D vpc2Plate,
double F,
double B,
Transform3D ecToCc,
Transform3D vpcToEc,
boolean doInfinite) {
// Lx,Ly Hx,Hy will be adjusted window boundaries
double Lx, Hx, Ly, Hy;
Lx = physicalWindowXLeft; Hx = physicalWindowXRight;
Ly = physicalWindowYBottom; Hy = physicalWindowYTop;
ecToCc.setIdentity();
// XXXX: we have no concept of glass correction in the Java 3D API
//
// Correction in apparent 3D position of window due to glass/CRT
// and spherical/cylinderical curvarure of CRT.
// This boils down to producing modified values of Lx Ly Hx Hy
// and is different for hot spot vs. window center corrections.
//
/* XXXX:
double cx, cy;
if(viewPolicy != HMD_VIEW && enable_crt_glass_correction) {
if (correction_point == CORRECTION_POINT_WINDOW_CENTER) {
correct_crt( ep, Lx, Ly, &cx, &cy); Lx = cx; Ly = cy;
correct_crt( ep, Hx, Hy, &cx, &cy); Hx = cx; Hy = cy;
}
else { // must be hot spot correction
// Not real code yet, for now just do same as above.
correct_crt( ep, Lx, Ly, &cx, &cy); Lx = cx; Ly = cy;
correct_crt( ep, Hx, Hy, &cx, &cy); Hx = cx; Hy = cy;
}
}
*/
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_2)) {
System.err.println("ep = " + ep);
System.err.println("Lx = " + Lx + ", Hx = " + Hx);
System.err.println("Ly = " + Ly + ", Hy = " + Hy);
System.err.println("F = " + F + ", B = " + B);
}
// Compute the proper projection equation. Note that we
// do this in two steps: first we generate ImagePlateToCc,
// then we translate this by EcToPlate, resulting in a
// projection from EctoCc.
//
// A more efficient (and more accurate) approach would be to
// modify the equations below to directly project from EcToCc.
if (viewCache.projectionPolicy == View.PARALLEL_PROJECTION) {
double inv_dx, inv_dy, inv_dz;
inv_dx = 1.0 / (Hx - Lx);
inv_dy = 1.0 / (Hy - Ly);
inv_dz = 1.0 / (F - B);
ecToCc.mat[0] = 2.0 * inv_dx;
ecToCc.mat[3] = -(Hx + Lx) * inv_dx;
ecToCc.mat[5] = 2.0 * inv_dy;
ecToCc.mat[7] = -(Hy + Ly) * inv_dy;
ecToCc.mat[10] = 2.0 * inv_dz;
ecToCc.mat[11] = -(F + B) * inv_dz;
}
else {
double sxy, rzb, inv_dx, inv_dy;
inv_dx = 1.0 / (Hx - Lx);
inv_dy = 1.0 / (Hy - Ly);
rzb = 1.0/(ep.z - B);
sxy = ep.z*rzb;
ecToCc.mat[0] = sxy*2.0*inv_dx;
ecToCc.mat[5] = sxy*2.0*inv_dy;
ecToCc.mat[2] = rzb*(Hx+Lx - 2.0*ep.x)*inv_dx;
ecToCc.mat[6] = rzb*(Hy+Ly - 2.0*ep.y)*inv_dy;
ecToCc.mat[10] = rzb*(B+F-2*ep.z)/(B-F);
ecToCc.mat[14] = -rzb;
ecToCc.mat[3] = sxy*(-Hx-Lx)*inv_dx;
ecToCc.mat[7] = sxy*(-Hy-Ly)*inv_dy;
ecToCc.mat[11] = rzb*(B - ep.z - B*(B+F - 2*ep.z)/(B-F));
ecToCc.mat[15] = sxy;
}
// Since we set the matrix elements ourselves, we need to set the
// type field. A value of 0 means a non-affine matrix.
ecToCc.setOrthoDirtyBit();
// EC to ImagePlate matrix is a simple translation.
tVec1.set(ep.x, ep.y, ep.z);
tMat1.set(tVec1);
ecToCc.mul(tMat1);
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_2)) {
System.err.println("ecToCc:");
analyzeProjection(ecToCc, Hx);
}
if(!doInfinite) {
// View matrix is:
// [plateToEc] [coexistence_to_plate] [vpc_to_coexistence]
// where vpc_to_coexistence includes the viewPlatformScale
// First compute ViewPlatform to Plate
vpc2Plate.mul(coe2Plate, vpcToCoexistence);
// ImagePlate to EC matrix is a simple translation.
tVec1.set(-ep.x, -ep.y, -ep.z);
tMat1.set(tVec1);
vpcToEc.mul(tMat1, vpc2Plate);
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_2)) {
System.err.println("vpcToEc:");
System.err.println(vpcToEc);
}
}
else {
// Final infinite composite is:
// [coexistence_to_eye] [vpc_to_coexistence (vom)]
// (does vworld_to_coe_scale_factor get used here??? )
//
// The method is to relocate the coexistence org centered on
// the eye rather than the window center (via coexistence_to_eye).
// Computationaly simpler simplifed equation form may exist.
// coexistence to eye is a simple translation.
/*
tVec1.set(ep.x, ep.y, ep.z);
tMat1.set(tVec1);
vpcToEc.mul(tMat1, vpcToCoexistence);
// First compute ViewPlatform to Plate
vpcToPlate.mul(coexistenceToPlatevpcToPlate, vpcToCoexistence);
*/
// ImagePlate to EC matrix is a simple translation.
tVec1.set(-ep.x, -ep.y, -ep.z);
tMat1.set(tVec1);
tMat1.mul(tMat1, vpc2Plate);
tMat1.getRotation(vpcToEc); // use only rotation component of transform
}
}
/**
* Compute the plane equations for the frustum in ViewPlatform
* coordinates, plus its viewing frustum points. ccToVworld will
* be cached - used by Canavs3D.getInverseVworldProjection().
*/
private void computeFrustumPlanes(Transform3D ecToCc,
Transform3D vpcToEc,
Vector4d [] frustumPlanes,
Point4d [] frustumPoints,
Transform3D ccToVworld) {
// Compute the inverse of the Vworld to Cc transform. This
// gives us the Cc to Vworld transform.
tMat2.mul(ecToCc, vpcToEc);
ccToVworld.mul(tMat2, vworldToVpc);
// System.err.println("ccToVworld = " + ccToVworld);
try {
ccToVworld.invert();
}
catch (SingularMatrixException e) {
ccToVworld.setIdentity();
// System.err.println("SingularMatrixException encountered when doing invert in computeFrustumPlanes");
}
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_2)) {
Transform3D t = new Transform3D();
t.mul(ecToCc, vpcToEc);
t.mul(vworldToVpc);
System.err.println("\nvworldToCc = " + t);
System.err.println("ccToVworld = " + ccToVworld);
t.mul(ccToVworld);
System.err.println("vworldToCc * ccToVworld = " + t);
}
// Transform the 8 corners of the viewing frustum into Vpc
frustumPoints[0].set(-1.0, -1.0, 1.0, 1.0); // lower-left-front
frustumPoints[1].set(-1.0, 1.0, 1.0, 1.0); // upper-left-front
frustumPoints[2].set( 1.0, 1.0, 1.0, 1.0); // upper-right-front
frustumPoints[3].set( 1.0, -1.0, 1.0, 1.0); // lower-right-front
frustumPoints[4].set(-1.0, -1.0, -1.0, 1.0); // lower-left-back
frustumPoints[5].set(-1.0, 1.0, -1.0, 1.0); // upper-left-back
frustumPoints[6].set( 1.0, 1.0, -1.0, 1.0); // upper-right-back
frustumPoints[7].set( 1.0, -1.0, -1.0, 1.0); // lower-right-back
ccToVworld.get(tMatrix);
int i;
for (i = 0; i < frustumPoints.length; i++) {
tMatrix.transform(frustumPoints[i]);
double w_inv = 1.0 / frustumPoints[i].w;
frustumPoints[i].x *= w_inv;
frustumPoints[i].y *= w_inv;
frustumPoints[i].z *= w_inv;
}
// Now compute the 6 plane equations
// left
computePlaneEq(frustumPoints[0], frustumPoints[4],
frustumPoints[5], frustumPoints[1],
frustumPlanes[0]);
// right
computePlaneEq(frustumPoints[3], frustumPoints[2],
frustumPoints[6], frustumPoints[7],
frustumPlanes[1]);
// top
computePlaneEq(frustumPoints[1], frustumPoints[5],
frustumPoints[6], frustumPoints[2],
frustumPlanes[2]);
// bottom
computePlaneEq(frustumPoints[0], frustumPoints[3],
frustumPoints[7], frustumPoints[4],
frustumPlanes[3]);
// front
computePlaneEq(frustumPoints[0], frustumPoints[1],
frustumPoints[2], frustumPoints[3],
frustumPlanes[4]);
// back
computePlaneEq(frustumPoints[4], frustumPoints[7],
frustumPoints[6], frustumPoints[5],
frustumPlanes[5]);
//System.err.println("left plane = " + frustumPlanes[0]);
//System.err.println("right plane = " + frustumPlanes[1]);
//System.err.println("top plane = " + frustumPlanes[2]);
//System.err.println("bottom plane = " + frustumPlanes[3]);
//System.err.println("front plane = " + frustumPlanes[4]);
//System.err.println("back plane = " + frustumPlanes[5]);
}
private void computePlaneEq(Point4d p1, Point4d p2, Point4d p3, Point4d p4,
Vector4d planeEq) {
tVec1.x = p3.x - p1.x;
tVec1.y = p3.y - p1.y;
tVec1.z = p3.z - p1.z;
tVec2.x = p2.x - p1.x;
tVec2.y = p2.y - p1.y;
tVec2.z = p2.z - p1.z;
tVec3.cross(tVec2, tVec1);
tVec3.normalize();
planeEq.x = tVec3.x;
planeEq.y = tVec3.y;
planeEq.z = tVec3.z;
planeEq.w = -(planeEq.x * p1.x + planeEq.y * p1.y + planeEq.z * p1.z);
}
// Get methods for returning derived data values.
// Eventually, these get functions will cause some of the parameters
// to be lazily evaluated.
//
// NOTE: in the case of Transform3D, and Tuple objects, a reference
// to the actual derived data is returned. In these cases, the caller
// must ensure that the returned data is not modified.
//
// NOTE: the snapshot and computeDerivedData methods are synchronized.
// Callers of the following methods that can run asynchronously with
// the renderer must call these methods and copy the data from within
// a synchronized block on the canvas view cache object.
int getCanvasX() {
return canvasX;
}
int getCanvasY() {
return canvasY;
}
int getCanvasWidth() {
return canvasWidth;
}
int getCanvasHeight() {
return canvasHeight;
}
double getPhysicalWindowWidth() {
return physicalWindowWidth;
}
double getPhysicalWindowHeight() {
return physicalWindowHeight;
}
boolean getUseStereo() {
return useStereo;
}
Transform3D getLeftProjection() {
return leftProjection;
}
Transform3D getRightProjection() {
return rightProjection;
}
Transform3D getLeftVpcToEc() {
return leftVpcToEc;
}
Transform3D getRightVpcToEc() {
return rightVpcToEc;
}
Transform3D getLeftEcToVpc() {
return leftEcToVpc;
}
Transform3D getRightEcToVpc() {
return rightEcToVpc;
}
Transform3D getInfLeftProjection() {
return infLeftProjection;
}
Transform3D getInfRightProjection() {
return infLeftProjection;
}
Transform3D getInfLeftVpcToEc() {
return infLeftVpcToEc;
}
Transform3D getInfRightVpcToEc() {
return infRightVpcToEc;
}
Transform3D getInfLeftEcToVpc() {
return infLeftEcToVpc;
}
Transform3D getInfgRightEcToVpc() {
return infRightEcToVpc;
}
Transform3D getInfVworldToVpc() {
return infVworldToVpc;
}
Transform3D getLeftCcToVworld() {
return leftCcToVworld;
}
Transform3D getRightCcToVworld() {
return rightCcToVworld;
}
Transform3D getImagePlateToVworld() {
// XXXX: Document -- This will return the transform of left plate.
return leftPlateToVworld;
}
Transform3D getLastVworldToImagePlate() {
// XXXX: Document -- This will return the transform of left plate.
return lastVworldToLeftPlate;
}
Transform3D getVworldToImagePlate() {
// XXXX: Document -- This will return the transform of left plate.
return vworldToLeftPlate;
}
Transform3D getVworldToTrackerBase() {
return vworldToTrackerBase;
}
double getVworldToCoexistenceScale() {
return vworldToCoexistenceScale;
}
double getInfVworldToCoexistenceScale() {
return infVworldToCoexistenceScale;
}
Point3d getLeftEyeInImagePlate() {
return leftEyeInImagePlate;
}
Point3d getRightEyeInImagePlate() {
return rightEyeInImagePlate;
}
Point3d getCenterEyeInImagePlate() {
return centerEyeInImagePlate;
}
Transform3D getHeadToVworld() {
return headToVworld;
}
Transform3D getVpcToVworld() {
return vpcToVworld;
}
Transform3D getVworldToVpc() {
return vworldToVpc;
}
// Transform the specified X point in AWT window-relative coordinates
// to image plate coordinates
double getWindowXInImagePlate(double x) {
double xScreen = x + (double)canvasX;
return metersPerPixelX * xScreen;
}
// Transform the specified Y point in AWT window-relative coordinates
// to image plate coordinates
double getWindowYInImagePlate(double y) {
double yScreen = y + (double)canvasY;
return metersPerPixelY * ((double)(screenHeight - 1) - yScreen);
}
Vector4d[] getLeftFrustumPlanesInVworld() {
return leftFrustumPlanes;
}
Vector4d[] getRightFrustumPlanesInVworld() {
return rightFrustumPlanes;
}
void getPixelLocationInImagePlate(double x, double y, double z,
Point3d imagePlatePoint) {
double screenx = (x + canvasX)*metersPerPixelX;
double screeny = (screenHeight - 1 - canvasY - y)*metersPerPixelY;
if ((viewCache.projectionPolicy == View.PERSPECTIVE_PROJECTION) &&
(centerEyeInImagePlate.z != 0)) {
double zScale = 1.0 - z/centerEyeInImagePlate.z;
imagePlatePoint.x = (screenx - centerEyeInImagePlate.x)*zScale
+ centerEyeInImagePlate.x;
imagePlatePoint.y = (screeny - centerEyeInImagePlate.y)*zScale
+ centerEyeInImagePlate.y;
} else {
imagePlatePoint.x = screenx;
imagePlatePoint.y = screeny;
}
imagePlatePoint.z = z;
}
/**
* Projects the specified point from image plate coordinates
* into AWT pixel coordinates.
*/
void getPixelLocationFromImagePlate(Point3d imagePlatePoint,
Point2d pixelLocation) {
double screenX, screenY;
if(viewCache.projectionPolicy == View.PERSPECTIVE_PROJECTION) {
// get the vector from centerEyeInImagePlate to imagePlatePoint
tVec1.sub(imagePlatePoint, centerEyeInImagePlate);
// Scale this vector to make it end at the projection plane.
// Scale is ratio :
// eye->imagePlate Plane dist / eye->imagePlatePt dist
// eye dist to plane is eyePos.z (eye is in +z space)
// image->eye dist is -tVec1.z (image->eye is in -z dir)
//System.err.println("eye dist = " + (centerEyeInImagePlate.z));
//System.err.println("image dist = " + (-tVec1.z));
if (tVec1.z != 0) {
double zScale = centerEyeInImagePlate.z / (-tVec1.z);
screenX = centerEyeInImagePlate.x + tVec1.x * zScale;
screenY = centerEyeInImagePlate.y + tVec1.y * zScale;
} else {
screenX = imagePlatePoint.x;
screenY = imagePlatePoint.y;
}
} else {
screenX = imagePlatePoint.x;
screenY = imagePlatePoint.y;
}
//System.err.println("screenX = " + screenX + " screenY = " + screenY);
// Note: screenPt is in image plate coords, at z=0
// Transform from image plate coords to screen coords
pixelLocation.x = (screenX / screenViewCache.metersPerPixelX) - canvasX;
pixelLocation.y = screenViewCache.screenHeight - 1 -
(screenY / screenViewCache.metersPerPixelY) - canvasY;
//System.err.println("pixelLocation = " + pixelLocation);
}
/**
* Constructs and initializes a CanvasViewCache object.
* Note that the canvas, screen, screenCache, view, and
* viewCache parameters are all fixed at construction time
* and must be non-null.
*/
CanvasViewCache(Canvas3D canvas,
ScreenViewCache screenViewCache,
ViewCache viewCache) {
this.canvas = canvas;
this.screenViewCache = screenViewCache;
this.viewCache = viewCache;
// Set up the initial plane equations
int i;
for (i = 0; i < leftFrustumPlanes.length; i++) {
leftFrustumPlanes[i] = new Vector4d();
rightFrustumPlanes[i] = new Vector4d();
}
for (i = 0; i < leftFrustumPoints.length; i++) {
leftFrustumPoints[i] = new Point4d();
rightFrustumPoints[i] = new Point4d();
}
// canvas is null in Renderer copyOfCvCache
if (canvas != null) {
leftEyeInImagePlate.set(canvas.leftManualEyeInImagePlate);
rightEyeInImagePlate.set(canvas.rightManualEyeInImagePlate);
centerEyeInImagePlate.add(leftEyeInImagePlate,
rightEyeInImagePlate);
centerEyeInImagePlate.scale(0.5);
}
if((J3dDebug.devPhase) && (J3dDebug.canvasViewCache >= J3dDebug.LEVEL_1))
System.err.println("Constructed a CanvasViewCache");
}
synchronized void setCanvas(Canvas3D c) {
canvas = c;
}
synchronized void setScreenViewCache(ScreenViewCache svc) {
screenViewCache = svc;
}
synchronized void setViewCache(ViewCache vc) {
viewCache = vc;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy