All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.scijava.java3d.Canvas3D Maven / Gradle / Ivy

/*
 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Sun designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Sun in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

package org.scijava.java3d;

import java.awt.AWTEvent;
import java.awt.Canvas;
import java.awt.Container;
import java.awt.Dimension;
import java.awt.Frame;
import java.awt.Graphics;
import java.awt.GraphicsConfiguration;
import java.awt.GraphicsDevice;
import java.awt.GraphicsEnvironment;
import java.awt.IllegalComponentStateException;
import java.awt.Point;
import java.awt.Window;
import java.awt.image.BufferedImage;
import java.util.ArrayList;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.Map;

import org.scijava.vecmath.Color3f;
import org.scijava.vecmath.Point2d;
import org.scijava.vecmath.Point3d;
import org.scijava.vecmath.Vector4d;


/**
 * The Canvas3D class provides a drawing canvas for 3D rendering.  It
 * is used either for on-screen rendering or off-screen rendering.
 * Canvas3D is an extension of the AWT Canvas class that users may
 * further subclass to implement additional functionality.
 * 

* The Canvas3D object extends the Canvas object to include * 3D-related information such as the size of the canvas in pixels, * the Canvas3D's location, also in pixels, within a Screen3D object, * and whether or not the canvas has stereo enabled. *

* Because all Canvas3D objects contain a * reference to a Screen3D object and because Screen3D objects define * the size of a pixel in physical units, Java 3D can convert a Canvas3D * size in pixels to a physical world size in meters. It can also * determine the Canvas3D's position and orientation in the * physical world. *

* On-screen Rendering vs. Off-screen Rendering *

* The Canvas3D class is used either for on-screen rendering or * off-screen rendering. * On-screen Canvas3Ds are added to AWT or Swing Container objects * like any other canvas. Java 3D automatically and continuously * renders to all on-screen canvases that are attached to an active * View object. On-screen Canvas3Ds can be either single or double * buffered and they can be either stereo or monoscopic. *

* Off-screen Canvas3Ds must not be added to any Container. Java 3D * renders to off-screen canvases in response to the * renderOffScreenBuffer method. Off-screen Canvas3Ds * are single buffered. However, on many systems, the actual * rendering is done to an off-screen hardware buffer or to a 3D * library-specific buffer and only copied to the off-screen buffer of * the Canvas when the rendering is complete, at "buffer swap" time. * Off-screen Canvas3Ds are monoscopic. *

* The setOffScreenBuffer method sets the off-screen buffer for this * Canvas3D. The specified image is written into by the Java 3D renderer. * The size of the specified ImageComponent determines the size, in * pixels, of this Canvas3D - the size inherited from Component is * ignored. Note that the size, physical width, and physical height of the * associated Screen3D must be set * explicitly prior to rendering. Failure to do so will result in an * exception. *

* The getOffScreenBuffer method retrieves the off-screen * buffer for this Canvas3D. *

* The renderOffScreenBuffer method schedules the rendering of a frame * into this Canvas3D's off-screen buffer. The rendering is done from * the point of view of the View object to which this Canvas3D has been * added. No rendering is performed if this Canvas3D object has not been * added to an active View. This method does not wait for the rendering * to actually happen. An application that wishes to know when the * rendering is complete must either subclass Canvas3D and * override the postSwap method, or call waitForOffScreenRendering. *

* The setOfScreenLocation methods set the location of this off-screen * Canvas3D. The location is the upper-left corner of the Canvas3D * relative to the upper-left corner of the corresponding off-screen * Screen3D. The function of these methods is similar to that of * Component.setLocation for on-screen Canvas3D objects. The default * location is (0,0). *

* Accessing and Modifying an Eye's Image Plate Position *

* A Canvas3D object provides sophisticated applications with access * to the eye's position information in head-tracked, room-mounted * runtime environments. It also allows applications to manipulate * the position of an eye relative to an image plate in non-head-tracked * runtime environments. *

* The setLeftManualEyeInImagePlate and setRightManualEyeInImagePlate * methods set the position of the manual left and right eyes in image * plate coordinates. These values determine eye placement when a head * tracker is not in use and the application is directly controlling the * eye position in image plate coordinates. In head-tracked mode or * when the windowEyepointPolicy is RELATIVE_TO_FIELD_OF_VIEW or * RELATIVE_TO_COEXISTENCE, this * value is ignored. When the windowEyepointPolicy is RELATIVE_TO_WINDOW, * only the Z value is used. *

* The getLeftEyeInImagePlate, getRightEyeInImagePlate, and * getCenterEyeInImagePlate methods retrieve the actual position of the * left eye, right eye, and center eye in image plate coordinates and * copy that value into the object provided. The center eye is the * fictional eye half-way between the left and right eye. These three * values are a function of the windowEyepointPolicy, the tracking * enable flag, and the manual left, right, and center eye positions. *

* Monoscopic View Policy *

* The setMonoscopicViewPolicy and getMonoscopicViewPolicy methods * set and retrieve the policy regarding how Java 3D generates monoscopic * view. If the policy is set to View.LEFT_EYE_VIEW, the view generated * corresponds to the view as seen from the left eye. If set to * View.RIGHT_EYE_VIEW, the view generated corresponds to the view as * seen from the right eye. If set to View.CYCLOPEAN_EYE_VIEW, the view * generated corresponds to the view as seen from the "center eye," the * fictional eye half-way between the left and right eye. The default * monoscopic view policy is View.CYCLOPEAN_EYE_VIEW. *

* Immediate Mode Rendering *

* Pure immediate-mode rendering provides for those applications and * applets that do not want Java 3D to do any automatic rendering of * the scene graph. Such applications may not even wish to build a * scene graph to represent their graphical data. However, they use * Java 3D's attribute objects to set graphics state and Java 3D's * geometric objects to render geometry. *

* A pure immediate mode application must create a minimal set of * Java 3D objects before rendering. In addition to a Canvas3D object, * the application must create a View object, with its associated * PhysicalBody and PhysicalEnvironment objects, and the following * scene graph elements: a VirtualUniverse object, a high-resolution * Locale object, a BranchGroup node object, a TransformGroup node * object with associated transform, and a ViewPlatform * leaf node object that defines the position and orientation within * the virtual universe that generates the view. *

* In immediate mode, all rendering is done completely under user * control. It is necessary for the user to clear the 3D canvas, * render all geometry, and swap the buffers. Additionally, * rendering the right and left eye for stereo viewing becomes the * sole responsibility of the application. In pure immediate mode, * the user must stop the Java 3D renderer, via the * Canvas3D object stopRenderer method, prior to adding the * Canvas3D object to an active View object (that is, one that is * attached to a live ViewPlatform object). *

* Other Canvas3D methods related to immediate mode rendering are: *

*

    * getGraphicsContext3D retrieves the immediate-mode * 3D graphics context associated with this Canvas3D. It creates a * new graphics context if one does not already exist. *

    * getGraphics2D retrieves the * 2D graphics object associated with this Canvas3D. It creates a * new 2D graphics object if one does not already exist. *

    * swap synchronizes and swaps buffers on a * double-buffered canvas for this Canvas3D object. This method * should only be called if the Java 3D renderer has been stopped. * In the normal case, the renderer automatically swaps * the buffer. *

* *

* Mixed Mode Rendering *

* Mixing immediate mode and retained or compiled-retained mode * requires more structure than pure immediate mode. In mixed mode, * the Java 3D renderer is running continuously, rendering the scene * graph into the canvas. * *

* Canvas3D methods related to mixed mode rendering are: * *

*

    * preRender called by the Java 3D rendering loop after * clearing the canvas and before any rendering has been done for * this frame. *

    * postRender called by the Java 3D rendering loop after * completing all rendering to the canvas for this frame and before * the buffer swap. *

    * postSwap called by the Java 3D rendering loop after * completing all rendering to the canvas, and all other canvases * associated with this view, for this frame following the * buffer swap. *

    * renderField called by the Java 3D rendering loop * during the execution of the rendering loop. It is called once * for each field (i.e., once per frame on a mono system or once * each for the right eye and left eye on a two-pass stereo system. *

*

* The above callback methods are called by the Java 3D rendering system * and should not be called by an application directly. * *

* The basic Java 3D stereo rendering loop, * executed for each Canvas3D, is as follows: *

     * clear canvas (both eyes)
     * call preRender()                           // user-supplied method
     * set left eye view
     * render opaque scene graph objects
     * call renderField(FIELD_LEFT)               // user-supplied method
     * render transparent scene graph objects
     * set right eye view
     * render opaque scene graph objects again
     * call renderField(FIELD_RIGHT)              // user-supplied method
     * render transparent scene graph objects again
     * call postRender()                          // user-supplied method
     * synchronize and swap buffers
     * call postSwap()                            // user-supplied method
     * 
*

* The basic Java 3D monoscopic rendering loop is as follows: *

     * clear canvas
     * call preRender()                            // user-supplied method
     * set view
     * render opaque scene graph objects
     * call renderField(FIELD_ALL)                 // user-supplied method
     * render transparent scene graph objects
     * call postRender()                           // user-supplied method
     * synchronize and swap buffers
     * call postSwap()                             // user-supplied method
     * 
*

* In both cases, the entire loop, beginning with clearing the canvas * and ending with swapping the buffers, defines a frame. The application * is given the opportunity to render immediate-mode geometry at any of * the clearly identified spots in the rendering loop. A user specifies * his or her own rendering methods by extending the Canvas3D class and * overriding the preRender, postRender, postSwap, and/or renderField * methods. * Updates to live Geometry, Texture, and ImageComponent objects * in the scene graph are not allowed from any of these callback * methods. * *

* Serialization *

* Canvas3D does not support serialization. An attempt to * serialize a Canvas3D object will result in an * UnsupportedOperationException being thrown. * *

* Additional Information *

* For more information, see the * Introduction to the Java 3D API and * View Model * documents. * * @see Screen3D * @see View * @see GraphicsContext3D */ public class Canvas3D extends Canvas { /** * Specifies the left field of a field-sequential stereo rendering loop. * A left field always precedes a right field. */ public static final int FIELD_LEFT = 0; /** * Specifies the right field of a field-sequential stereo rendering loop. * A right field always follows a left field. */ public static final int FIELD_RIGHT = 1; /** * Specifies a single-field rendering loop. */ public static final int FIELD_ALL = 2; // // The following constants are bit masks to specify which of the node // components are dirty and need updates. // // Values for the geometryType field. static final int POLYGONATTRS_DIRTY = 0x01; static final int LINEATTRS_DIRTY = 0x02; static final int POINTATTRS_DIRTY = 0x04; static final int MATERIAL_DIRTY = 0x08; static final int TRANSPARENCYATTRS_DIRTY = 0x10; static final int COLORINGATTRS_DIRTY = 0x20; // Values for lightbin, env set, texture, texture setting etc. static final int LIGHTBIN_DIRTY = 0x40; static final int LIGHTENABLES_DIRTY = 0x80; static final int AMBIENTLIGHT_DIRTY = 0x100; static final int ATTRIBUTEBIN_DIRTY = 0x200; static final int TEXTUREBIN_DIRTY = 0x400; static final int TEXTUREATTRIBUTES_DIRTY = 0x800; static final int RENDERMOLECULE_DIRTY = 0x1000; static final int FOG_DIRTY = 0x2000; static final int MODELCLIP_DIRTY = 0x4000; static final int VIEW_MATRIX_DIRTY = 0x8000; // static final int SHADER_DIRTY = 0x10000; Not ready for this yet -- JADA // // Flag that indicates whether this Canvas3D is an off-screen Canvas3D // boolean offScreen = false; // // Issue 131: Flag that indicates whether this Canvas3D is a manually // rendered Canvas3D (versus an automatically rendered Canvas3D). // // NOTE: manualRendering only applies to off-screen Canvas3Ds at this time. // We have no plans to ever change this, but if we do, it might be necessary // to determine which, if any, of the uses of "manualRendering" should be // changed to "manualRendering&&offScreen" // boolean manualRendering = false; // user specified offScreen Canvas location Point offScreenCanvasLoc; // user specified offScreen Canvas dimension Dimension offScreenCanvasSize; // // Flag that indicates whether off-screen rendering is in progress or not // volatile boolean offScreenRendering = false; // // Flag that indicates we are waiting for an off-screen buffer to be // created or destroyed by the Renderer. // volatile boolean offScreenBufferPending = false; // // ImageComponent used for off-screen rendering // ImageComponent2D offScreenBuffer = null; // flag that indicates whether this canvas will use shared context boolean useSharedCtx = true; // // Read-only flag that indicates whether stereo is supported for this // canvas. This is always false for off-screen canvases. // boolean stereoAvailable; // // Flag to enable stereo rendering, if allowed by the // stereoAvailable flag. // boolean stereoEnable = true; // // This flag is set when stereo mode is both enabled and // available. Code that looks at stereo mode should use this // flag. // boolean useStereo; // Indicate whether it is left or right stereo pass currently boolean rightStereoPass = false; // // Specifies how Java 3D generates monoscopic view // (LEFT_EYE_VIEW, RIGHT_EYE_VIEW, or CYCLOPEAN_EYE_VIEW). // int monoscopicViewPolicy = View.CYCLOPEAN_EYE_VIEW; // User requested stencil size int requestedStencilSize; // Actual stencil size return for this canvas int actualStencilSize; // True if stencil buffer is available for user boolean userStencilAvailable; // True if stencil buffer is available for system ( decal ) boolean systemStencilAvailable; // // Read-only flag that indicates whether double buffering is supported // for this canvas. This is always false for off-screen canvases. // boolean doubleBufferAvailable; // // Flag to enable double buffered rendering, if allowed by the // doubleBufferAvailable flag. // boolean doubleBufferEnable = true; // // This flag is set when doubleBuffering is both enabled and // available Code that enables or disables double buffering should // use this flag. // boolean useDoubleBuffer; // // Read-only flag that indicates whether scene antialiasing // is supported for this canvas. // boolean sceneAntialiasingAvailable; boolean sceneAntialiasingMultiSamplesAvailable; // Use to see whether antialiasing is already set private boolean antialiasingSet = false; // // Read-only flag that indicates the size of the texture color // table for this canvas. A value of 0 indicates that the texture // color table is not supported. // int textureColorTableSize; // number of active/enabled texture unit int numActiveTexUnit = 0; // index iof last enabled texture unit int lastActiveTexUnit = -1; // True if shadingLanguage is supported, otherwise false. boolean shadingLanguageGLSL = false; // Query properties J3dQueryProps queryProps; // Flag indicating a fatal rendering error of some sort private boolean fatalError = false; // // The positions of the manual left and right eyes in image-plate // coordinates. // By default, we will use the center of the screen for X and Y values // (X values are adjusted for default eye separation), and // 0.4572 meters (18 inches) for the Z value. // These match defaults elsewhere in the system. // Point3d leftManualEyeInImagePlate = new Point3d(0.142, 0.135, 0.4572); Point3d rightManualEyeInImagePlate = new Point3d(0.208, 0.135, 0.4572); // // View that is attached to this Canvas3D. // View view = null; // View waiting to be set View pendingView; // // View cache for this canvas and its associated view. // CanvasViewCache canvasViewCache = null; // Issue 109: View cache for this canvas, for computing view frustum planes CanvasViewCache canvasViewCacheFrustum = null; // Since multiple renderAtomListInfo, share the same vecBounds // we want to do the intersection test only once per renderAtom // this flag is set to true after the first intersect and set to // false during checkForCompaction in renderBin boolean raIsVisible = false; RenderAtom ra = null; // Stereo related field has changed. static final int STEREO_DIRTY = 0x01; // MonoscopicViewPolicy field has changed. static final int MONOSCOPIC_VIEW_POLICY_DIRTY = 0x02; // Left/right eye in image plate field has changed. static final int EYE_IN_IMAGE_PLATE_DIRTY = 0x04; // Canvas has moved/resized. static final int MOVED_OR_RESIZED_DIRTY = 0x08; // Canvas Background changed (this may affect doInfinite flag) static final int BACKGROUND_DIRTY = 0x10; // Canvas Background Image changed static final int BACKGROUND_IMAGE_DIRTY = 0x20; // Mask that indicates this Canvas view dependence info. has changed, // and CanvasViewCache may need to recompute the final view matries. static final int VIEW_INFO_DIRTY = (STEREO_DIRTY | MONOSCOPIC_VIEW_POLICY_DIRTY | EYE_IN_IMAGE_PLATE_DIRTY | MOVED_OR_RESIZED_DIRTY | BACKGROUND_DIRTY | BACKGROUND_IMAGE_DIRTY); // Issue 163: Array of dirty bits is used because the Renderer and // RenderBin run asynchronously. Now that they each have a separate // instance of CanvasViewCache (due to the fix for Issue 109), they // need separate dirty bits. Array element 0 is used for the Renderer and // element 1 is used for the RenderBin. static final int RENDERER_DIRTY_IDX = 0; static final int RENDER_BIN_DIRTY_IDX = 1; int[] cvDirtyMask = new int[2]; // This boolean informs the J3DGraphics2DImpl that the window is resized boolean resizeGraphics2D = true; // // This boolean allows an application to start and stop the render // loop on this canvas. // volatile boolean isRunning = true; // This is used by MasterControl only. MC relay on this in a // single loop to set renderer thread. During this time, // the isRunningStatus can't change by user thread. volatile boolean isRunningStatus = true; // This is true when the canvas is ready to be rendered into boolean active = false; // This is true when the canvas is visible boolean visible = false; // This is true if context need to recreate boolean ctxReset = true; // The Screen3D that corresponds to this Canvas3D Screen3D screen = null; // Flag to indicate that image is render completely // so swap is valid. boolean imageReady = false; // The 3D Graphics context used for immediate mode rendering // into this canvas. GraphicsContext3D graphicsContext3D = null; boolean waiting = false; boolean swapDone = false; GraphicsConfiguration graphicsConfiguration; // The Java 3D Graphics2D object used for Java2D/AWT rendering // into this Canvas3D J3DGraphics2DImpl graphics2D = null; // Lock used to synchronize the creation of the 2D and 3D // graphics context objects Object gfxCreationLock = new Object(); // The source of the currently loaded localToVWorld for this Canvas3D // (used to only update the model matrix when it changes) // Transform3D localToVWorldSrc = null; // The current vworldToEc Transform Transform3D vworldToEc = new Transform3D(); // The view transform (VPC to EC) for the current eye. // NOTE that this is *read-only* Transform3D vpcToEc; // Opaque object representing the underlying drawable (window). This // is defined by the Pipeline. Drawable drawable = null; // graphicsConfigTable is a static hashtable which allows getBestConfiguration() // in NativeConfigTemplate3D to map a GraphicsConfiguration to the pointer // to the actual GLXFBConfig that glXChooseFBConfig() returns. The Canvas3D // doesn't exist at the time getBestConfiguration() is called, and // X11GraphicsConfig neither maintains this pointer nor provides a public // constructor to allow Java 3D to extend it. static Hashtable graphicsConfigTable = new Hashtable(); // The native graphics version, vendor, and renderer information String nativeGraphicsVersion = ""; String nativeGraphicsVendor = ""; String nativeGraphicsRenderer = ""; boolean firstPaintCalled = false; // This reflects whether or not this canvas has seen an addNotify. It is // forced to true for off-screen canvases boolean added = false; // Flag indicating whether addNotify has been called (so we don't process it twice). private boolean addNotifyCalled = false; // This is the id for the underlying graphics context structure. Context ctx = null; // since the ctx id can be the same as the previous one, // we need to keep a time stamp to differentiate the contexts with the // same id volatile long ctxTimeStamp = 0; // The current context setting for local eye lighting boolean ctxEyeLightingEnable = false; // This AppearanceRetained Object refelects the current state of this // canvas. It is used to optimize setting of attributes at render time. AppearanceRetained currentAppear = new AppearanceRetained(); // This MaterialRetained Object refelects the current state of this canvas. // It is used to optimize setting of attributes at render time. MaterialRetained currentMaterial = new MaterialRetained(); /** * The object used for View Frustum Culling */ CachedFrustum viewFrustum = new CachedFrustum(); /** * The RenderBin bundle references used to decide what the underlying * context contains. */ LightBin lightBin = null; EnvironmentSet environmentSet = null; AttributeBin attributeBin = null; ShaderBin shaderBin = null; RenderMolecule renderMolecule = null; PolygonAttributesRetained polygonAttributes = null; LineAttributesRetained lineAttributes = null; PointAttributesRetained pointAttributes = null; MaterialRetained material = null; boolean enableLighting = false; TransparencyAttributesRetained transparency = null; ColoringAttributesRetained coloringAttributes = null; Transform3D modelMatrix = null; Transform3D projTrans = null; TextureBin textureBin = null; /** * cached RenderBin states for lazy native states update */ LightRetained lights[] = null; int frameCount[] = null; long enableMask = -1; FogRetained fog = null; ModelClipRetained modelClip = null; Color3f sceneAmbient = new Color3f(); TextureUnitStateRetained[] texUnitState = null; /** * These cached values are only used in Pure Immediate and Mixed Mode rendering */ TextureRetained texture = null; TextureAttributesRetained texAttrs = null; TexCoordGenerationRetained texCoordGeneration = null; RenderingAttributesRetained renderingAttrs = null; AppearanceRetained appearance = null; ShaderProgramRetained shaderProgram = null; // only used in Mixed Mode rendering Object appHandle = null; /** * Dirty bit to determine if the NodeComponent needs to be re-sent * down to the underlying API */ int canvasDirty = 0xffff; // True when either one of dirtyRenderMoleculeList, // dirtyDlistPerRinfoList, dirtyRenderAtomList size > 0 boolean dirtyDisplayList = false; ArrayList dirtyRenderMoleculeList = new ArrayList(); ArrayList dirtyRenderAtomList = new ArrayList(); // List of (Rm, rInfo) pair of individual dlists that need to be rebuilt ArrayList dirtyDlistPerRinfoList = new ArrayList(); ArrayList displayListResourceFreeList = new ArrayList(); ArrayList textureIdResourceFreeList = new ArrayList(); // an unique bit to identify this canvas int canvasBit = 0; // an unique number to identify this canvas : ( canvasBit = 1 << canvasId) int canvasId = 0; // Indicates whether the canvasId has been allocated private boolean canvasIdAlloc = false; // Avoid using this as lock, it cause deadlock Object cvLock = new Object(); Object evaluateLock = new Object(); Object dirtyMaskLock = new Object(); // For D3D, instead of using the same variable in Renderer, // each canvas has to build its own displayList. boolean needToRebuildDisplayList = false; // Read-only flag that indicates whether the following texture features // are supported for this canvas. static final int TEXTURE_3D = 0x0001; static final int TEXTURE_COLOR_TABLE = 0x0002; static final int TEXTURE_MULTI_TEXTURE = 0x0004; static final int TEXTURE_COMBINE = 0x0008; static final int TEXTURE_COMBINE_DOT3 = 0x0010; static final int TEXTURE_COMBINE_SUBTRACT = 0x0020; static final int TEXTURE_REGISTER_COMBINERS = 0x0040; static final int TEXTURE_CUBE_MAP = 0x0080; static final int TEXTURE_SHARPEN = 0x0100; static final int TEXTURE_DETAIL = 0x0200; static final int TEXTURE_FILTER4 = 0x0400; static final int TEXTURE_ANISOTROPIC_FILTER = 0x0800; static final int TEXTURE_LOD_RANGE = 0x1000; static final int TEXTURE_LOD_OFFSET = 0x2000; // Use by D3D to indicate using one pass Blend mode // if Texture interpolation mode is support. static final int TEXTURE_LERP = 0x4000; static final int TEXTURE_NON_POWER_OF_TWO = 0x8000; static final int TEXTURE_AUTO_MIPMAP_GENERATION = 0x10000; int textureExtendedFeatures = 0; // Extensions supported by the underlying canvas // // NOTE: we should remove EXT_BGR and EXT_ABGR when the imaging code is // rewritten // killed global alpha //static final int SUN_GLOBAL_ALPHA = 0x1; static final int EXT_ABGR = 0x2; static final int EXT_BGR = 0x4; static final int MULTISAMPLE = 0x8; // The following 10 variables are set by the native // createNewContext()/createQueryContext() methods // Supported Extensions int extensionsSupported = 0; // Anisotropic Filter degree float anisotropicDegreeMax = 1.0f; // Texture Boundary Width Max int textureBoundaryWidthMax = 0; boolean multiTexAccelerated = false; // Max number of texture coordinate sets int maxTexCoordSets = 1; // Max number of fixed-function texture units int maxTextureUnits = 1; // Max number of fragment shader texture units int maxTextureImageUnits = 0; // Max number of vertex shader texture units int maxVertexTextureImageUnits = 0; // Max number of combined shader texture units int maxCombinedTextureImageUnits = 0; // Max number of vertex attrs (not counting coord, etc.) int maxVertexAttrs = 0; // End of variables set by createNewContext()/createQueryContext() // The total available number of texture units used by either the // fixed-function or programmable shader pipeline. // This is computed as: max(maxTextureUnits, maxTextureImageUnits) int maxAvailableTextureUnits; // Texture Width, Height Max int textureWidthMax = 0; int textureHeightMax = 0; // Texture3D Width, Heigh, Depth Max int texture3DWidthMax = -1; int texture3DHeightMax = -1; int texture3DDepthMax = -1; // Cached position & size for CanvasViewCache. // We don't want to call canvas.getxx method in Renderer // since it will cause deadlock as removeNotify() need to get // component lock of Canvas also and need to wait Renderer to // finish before continue. So we invoke the method now in // CanvasViewEventCatcher. Point newPosition = new Point(); Dimension newSize = new Dimension(); // Remember OGL context resources to free // before context is destroy. // It is used when sharedCtx = false; ArrayList textureIDResourceTable = new ArrayList(5); // The following variables are used by the lazy download of // states code to keep track of the set of current to be update bins static final int LIGHTBIN_BIT = 0x0; static final int ENVIRONMENTSET_BIT = 0x1; static final int ATTRIBUTEBIN_BIT = 0x2; static final int TEXTUREBIN_BIT = 0x3; static final int RENDERMOLECULE_BIT = 0x4; static final int TRANSPARENCY_BIT = 0x5; static final int SHADERBIN_BIT = 0x6; // bitmask to specify if the corresponding "bin" needs to be updated int stateUpdateMask = 0; // the set of current "bins" that is to be updated, the stateUpdateMask // specifies if each bin in this set is updated or not. Object curStateToUpdate[] = new Object[7]; /** * The list of lights that are currently being represented in the native * graphics context. */ LightRetained[] currentLights = null; /** * Flag to override RenderAttributes.depthBufferWriteEnable */ boolean depthBufferWriteEnableOverride = false; /** * Flag to override RenderAttributes.depthBufferEnable */ boolean depthBufferEnableOverride = false; // current state of depthBufferWriteEnable boolean depthBufferWriteEnable = true; boolean vfPlanesValid = false; // The event catcher for this canvas. EventCatcher eventCatcher; // The view event catcher for this canvas. private CanvasViewEventCatcher canvasViewEventCatcher; // The top-level parent window for this canvas. private Window windowParent; // Issue 458 - list of all parent containers for this canvas // (includes top-level parent window) private LinkedList containerParentList = new LinkedList(); // flag that indicates if light has changed boolean lightChanged = false; // resource control object DrawingSurfaceObject drawingSurfaceObject; // true if context is valid for rendering boolean validCtx = false; // true if canvas is valid for rendering boolean validCanvas = false; // true if ctx changed between render and swap. In this case // cv.canvasDirty flag will not reset in Renderer. // This case happen when GraphicsContext3D invoked doClear() // and canvas removeNotify() called while Renderer is running boolean ctxChanged = false; // Default graphics configuration private static GraphicsConfiguration defaultGcfg = null; // Returns default graphics configuration if user passes null // into the Canvas3D constructor private static synchronized GraphicsConfiguration defaultGraphicsConfiguration() { if (defaultGcfg == null) { GraphicsConfigTemplate3D template = new GraphicsConfigTemplate3D(); defaultGcfg = GraphicsEnvironment.getLocalGraphicsEnvironment(). getDefaultScreenDevice().getBestConfiguration(template); } return defaultGcfg; } // Returns true if this is a valid graphics configuration, obtained // via a GraphicsConfigTemplate3D. private static boolean isValidConfig(GraphicsConfiguration gconfig) { // If this is a valid GraphicsConfiguration object, then it will // be in the graphicsConfigTable return graphicsConfigTable.containsKey(gconfig); } // Checks the given graphics configuration, and throws an exception if // the config is null or invalid. private static synchronized GraphicsConfiguration checkForValidGraphicsConfig(GraphicsConfiguration gconfig, boolean offScreen) { // Issue 266 - for backwards compatibility with legacy applications, // we will accept a null GraphicsConfiguration for an on-screen Canvas3D // only if the "allowNullGraphicsConfig" system property is set to true. if (!offScreen && VirtualUniverse.mc.allowNullGraphicsConfig) { if (gconfig == null) { // Print out warning if Canvas3D is called with a // null GraphicsConfiguration System.err.println(J3dI18N.getString("Canvas3D7")); System.err.println(" " + J3dI18N.getString("Canvas3D18")); // Use a default graphics config gconfig = defaultGraphicsConfiguration(); } } // Validate input graphics config if (gconfig == null) { throw new NullPointerException(J3dI18N.getString("Canvas3D19")); } else if (!isValidConfig(gconfig)) { throw new IllegalArgumentException(J3dI18N.getString("Canvas3D17")); } return gconfig; } // Return the actual graphics config that will be used to construct // the AWT Canvas. This is permitted to be non-unique or null. private static GraphicsConfiguration getGraphicsConfig(GraphicsConfiguration gconfig) { return Pipeline.getPipeline().getGraphicsConfig(gconfig); } /** * Constructs and initializes a new Canvas3D object that Java 3D * can render into. The following Canvas3D attributes are initialized * to default values as shown: *

    * left manual eye in image plate : (0.142, 0.135, 0.4572)
    * right manual eye in image plate : (0.208, 0.135, 0.4572)
    * stereo enable : true
    * double buffer enable : true
    * monoscopic view policy : View.CYCLOPEAN_EYE_VIEW
    * off-screen mode : false
    * off-screen buffer : null
    * off-screen location : (0,0)
    *
* * @param graphicsConfiguration a valid GraphicsConfiguration object that * will be used to create the canvas. This object should not be null and * should be created using a GraphicsConfigTemplate3D or the * getPreferredConfiguration() method of the SimpleUniverse utility. For * backward compatibility with earlier versions of Java 3D, a null or * default GraphicsConfiguration will still work when used to create a * Canvas3D on the default screen, but an error message will be printed. * A NullPointerException or IllegalArgumentException will be thrown in a * subsequent release. * * @exception IllegalArgumentException if the specified * GraphicsConfiguration does not support 3D rendering */ public Canvas3D(GraphicsConfiguration graphicsConfiguration) { this(null, checkForValidGraphicsConfig(graphicsConfiguration, false), false); } /** * Constructs and initializes a new Canvas3D object that Java 3D * can render into. * * @param graphicsConfiguration a valid GraphicsConfiguration object * that will be used to create the canvas. This must be created either * with a GraphicsConfigTemplate3D or by using the * getPreferredConfiguration() method of the SimpleUniverse utility. * * @param offScreen a flag that indicates whether this canvas is * an off-screen 3D rendering canvas. Note that if offScreen * is set to true, this Canvas3D object cannot be used for normal * rendering; it should not be added to any Container object. * * @exception NullPointerException if the GraphicsConfiguration * is null. * * @exception IllegalArgumentException if the specified * GraphicsConfiguration does not support 3D rendering * * @since Java 3D 1.2 */ public Canvas3D(GraphicsConfiguration graphicsConfiguration, boolean offScreen) { this(null, checkForValidGraphicsConfig(graphicsConfiguration, offScreen), offScreen); } // Private constructor only called by the two public constructors after // they have validated the graphics config (and possibly constructed a new // default config). // The graphics config must be valid, unique, and non-null. private Canvas3D(Object dummyObj1, GraphicsConfiguration graphicsConfiguration, boolean offScreen) { this(dummyObj1, graphicsConfiguration, getGraphicsConfig(graphicsConfiguration), offScreen); } // Private constructor only called by the previous private constructor. // The graphicsConfiguration parameter is used by Canvas3D to lookup the // graphics device and graphics template. The graphicsConfiguration2 // parameter is generated by the Pipeline from graphicsConfiguration and // is only used to initialize the java.awt.Canvas. private Canvas3D(Object dummyObj1, GraphicsConfiguration graphicsConfiguration, GraphicsConfiguration graphicsConfiguration2, boolean offScreen) { super(graphicsConfiguration2); this.offScreen = offScreen; this.graphicsConfiguration = graphicsConfiguration; // Issue 131: Set the autoOffScreen variable based on whether this // canvas3d implements the AutoOffScreenCanvas3D tagging interface. // Eventually, we may replace this with an actual API. boolean autoOffScreenCanvas3D = false; if (this instanceof AutoOffScreenCanvas3D) { autoOffScreenCanvas3D = true; } // Throw an illegal argument exception if an on-screen canvas is tagged // as an auto-off-screen canvas if (autoOffScreenCanvas3D && !offScreen) { throw new IllegalArgumentException(J3dI18N.getString("Canvas3D25")); } // Issue 163 : Set dirty bits for both Renderer and RenderBin cvDirtyMask[0] = VIEW_INFO_DIRTY; cvDirtyMask[1] = VIEW_INFO_DIRTY; GraphicsConfigInfo gcInfo = graphicsConfigTable.get(graphicsConfiguration); requestedStencilSize = gcInfo.getGraphicsConfigTemplate3D().getStencilSize(); if (offScreen) { // Issue 131: set manual rendering flag based on whether this is // an auto-off-screen Canvas3D. manualRendering = !autoOffScreenCanvas3D; screen = new Screen3D(graphicsConfiguration, offScreen); // QUESTION: keep a list of off-screen Screen3D objects? // Does this list need to be grouped by GraphicsDevice? synchronized(dirtyMaskLock) { cvDirtyMask[0] |= MOVED_OR_RESIZED_DIRTY; cvDirtyMask[1] |= MOVED_OR_RESIZED_DIRTY; } // this canvas will not receive the paint callback, // so we need to set the necessary flags here firstPaintCalled = true; if (manualRendering) { // since this canvas will not receive the addNotify // callback from AWT, set the added flag here for // evaluateActive to work correctly added = true; } evaluateActive(); // create the rendererStructure object //rendererStructure = new RendererStructure(); offScreenCanvasLoc = new Point(0, 0); offScreenCanvasSize = new Dimension(0, 0); this.setLocation(offScreenCanvasLoc); this.setSize(offScreenCanvasSize); newSize = offScreenCanvasSize; newPosition = offScreenCanvasLoc; // Issue 131: create event catchers for auto-offScreen if (!manualRendering) { eventCatcher = new EventCatcher(this); canvasViewEventCatcher = new CanvasViewEventCatcher(this); } } else { GraphicsDevice graphicsDevice; graphicsDevice = graphicsConfiguration.getDevice(); eventCatcher = new EventCatcher(this); canvasViewEventCatcher = new CanvasViewEventCatcher(this); synchronized(VirtualUniverse.mc.deviceScreenMap) { screen = VirtualUniverse.mc.deviceScreenMap.get(graphicsDevice); if (screen == null) { screen = new Screen3D(graphicsConfiguration, offScreen); VirtualUniverse.mc.deviceScreenMap.put(graphicsDevice, screen); } } } lights = new LightRetained[VirtualUniverse.mc.maxLights]; frameCount = new int[VirtualUniverse.mc.maxLights]; for (int i=0; i * Updates to live Geometry, Texture, and ImageComponent objects * in the scene graph are not allowed from this method. * *

* NOTE: Applications should not call this method. */ public void preRender() { // Do nothing; the user overrides this to cause some action } /** * This routine is called by the Java 3D rendering loop after completing * all rendering to the canvas for this frame and before the buffer swap. * Applications that wish to perform operations in the rendering loop, * following any actual rendering may override this function. * *

* Updates to live Geometry, Texture, and ImageComponent objects * in the scene graph are not allowed from this method. * *

* NOTE: Applications should not call this method. */ public void postRender() { // Do nothing; the user overrides this to cause some action } /** * This routine is called by the Java 3D rendering loop after completing * all rendering to the canvas, and all other canvases associated with * this view, for this frame following the buffer swap. * Applications that wish to perform operations at the very * end of the rendering loop may override this function. * In off-screen mode, all rendering is copied to the off-screen * buffer before this method is called. * *

* Updates to live Geometry, Texture, and ImageComponent objects * in the scene graph are not allowed from this method. * *

* NOTE: Applications should not call this method. */ public void postSwap() { // Do nothing; the user overrides this to cause some action } /** * This routine is called by the Java 3D rendering loop during the * execution of the rendering loop. It is called once for each * field (i.e., once per frame on * a mono system or once each for the right eye and left eye on a * two-pass stereo system. This is intended for use by applications that * want to mix retained/compiled-retained mode rendering with some * immediate mode rendering. Applications that wish to perform * operations during the rendering loop, may override this * function. * *

* Updates to live Geometry, Texture, and ImageComponent objects * in the scene graph are not allowed from this method. * *

* NOTE: Applications should not call this method. *

* * @param fieldDesc field description, one of: FIELD_LEFT, FIELD_RIGHT or * FIELD_ALL. Applications that wish to work correctly in stereo mode * should render the same image for both FIELD_LEFT and FIELD_RIGHT calls. * If Java 3D calls the renderer with FIELD_ALL then the immediate mode * rendering only needs to be done once. */ public void renderField(int fieldDesc) { // Do nothing; the user overrides this to cause some action } /** * Stop the Java 3D renderer on this Canvas3D object. If the * Java 3D renderer is currently running, the rendering will be * synchronized before being stopped. No further rendering will be done * to this canvas by Java 3D until the renderer is started again. * In pure immediate mode this method should be called prior to adding * this canvas to an active View object. * * @exception IllegalStateException if this Canvas3D is in * off-screen mode. */ public final void stopRenderer() { // Issue 131: renderer can't be stopped only if it is an offscreen, // manual canvas. Otherwise, it has to be seen as an onscreen canvas. if (manualRendering) throw new IllegalStateException(J3dI18N.getString("Canvas3D14")); if (isRunning) { VirtualUniverse.mc.postRequest(MasterControl.STOP_RENDERER, this); isRunning = false; } } /** * Start the Java 3D renderer on this Canvas3D object. If the * Java 3D renderer is not currently running, any rendering to other * Canvas3D objects sharing the same View will be synchronized before this * Canvas3D's renderer is (re)started. When a Canvas3D is created, it is * initially marked as being started. This means that as soon as the * Canvas3D is added to an active View object, the rendering loop will * render the scene graph to the canvas. */ public final void startRenderer() { // Issue 260 : ignore attempt to start renderer if fatal error if (fatalError) { return; } if (!isRunning) { VirtualUniverse.mc.postRequest(MasterControl.START_RENDERER, this); isRunning = true; redraw(); } } /** * Retrieves the state of the renderer for this Canvas3D object. * @return the state of the renderer * * @since Java 3D 1.2 */ public final boolean isRendererRunning() { return isRunning; } // Returns the state of the fatal error flag boolean isFatalError() { return fatalError; } // Sets the fatal error flag to true; stop the renderer for this canvas void setFatalError() { fatalError = true; if (isRunning) { isRunning = false; if (!manualRendering) { VirtualUniverse.mc.postRequest(MasterControl.STOP_RENDERER, this); } } } /** * Retrieves a flag indicating whether this Canvas3D is an * off-screen canvas. * * @return true if this Canvas3D is an off-screen canvas; * false if this is an on-screen canvas. * * @since Java 3D 1.2 */ public boolean isOffScreen() { return offScreen; } /** * Sets the off-screen buffer for this Canvas3D. The specified * image is written into by the Java 3D renderer. The size of the * specified ImageComponent determines the size, in pixels, of * this Canvas3D--the size inherited from Component is ignored. *

* NOTE: the size, physical width, and physical height of the associated * Screen3D must be set explicitly prior to rendering. * Failure to do so will result in an exception. *

* * @param buffer the image component that will be rendered into by * subsequent calls to renderOffScreenBuffer. The image component must not * be part of a live scene graph, nor may it subsequently be made part of a * live scene graph while being used as an off-screen buffer; an * IllegalSharingException is thrown in such cases. The buffer may be null, * indicating that the previous off-screen buffer is released without a new * buffer being set. * * @exception IllegalStateException if this Canvas3D is not in * off-screen mode. * * @exception RestrictedAccessException if an off-screen rendering * is in process for this Canvas3D. * * @exception IllegalSharingException if the specified ImageComponent2D * is part of a live scene graph * * @exception IllegalSharingException if the specified ImageComponent2D is * being used by an immediate mode context, or by another Canvas3D as * an off-screen buffer. * * @exception IllegalArgumentException if the image class of the specified * ImageComponent2D is not ImageClass.BUFFERED_IMAGE. * * @exception IllegalArgumentException if the specified * ImageComponent2D is in by-reference mode and its * RenderedImage is null. * * @exception IllegalArgumentException if the ImageComponent2D format * is not a 3-component format (e.g., FORMAT_RGB) * or a 4-component format (e.g., FORMAT_RGBA). * * @see #renderOffScreenBuffer * @see Screen3D#setSize(int, int) * @see Screen3D#setSize(Dimension) * @see Screen3D#setPhysicalScreenWidth * @see Screen3D#setPhysicalScreenHeight * * @since Java 3D 1.2 */ public void setOffScreenBuffer(ImageComponent2D buffer) { int width, height; boolean freeCanvasId = false; if (!offScreen) throw new IllegalStateException(J3dI18N.getString("Canvas3D1")); if (offScreenRendering) throw new RestrictedAccessException(J3dI18N.getString("Canvas3D2")); // Check that offScreenBufferPending is not already set J3dDebug.doAssert(!offScreenBufferPending, "!offScreenBufferPending"); if (offScreenBuffer != null && offScreenBuffer != buffer) { ImageComponent2DRetained i2dRetained = (ImageComponent2DRetained)offScreenBuffer.retained; i2dRetained.setUsedByOffScreen(false); } if (buffer != null) { ImageComponent2DRetained bufferRetained = (ImageComponent2DRetained)buffer.retained; if (bufferRetained.byReference && !(bufferRetained.getRefImage(0) instanceof BufferedImage)) { throw new IllegalArgumentException(J3dI18N.getString("Canvas3D15")); } if (bufferRetained.getNumberOfComponents() < 3 ) { throw new IllegalArgumentException(J3dI18N.getString("Canvas3D16")); } if (buffer.isLive()) { throw new IllegalSharingException(J3dI18N.getString("Canvas3D26")); } if (bufferRetained.getInImmCtx()) { throw new IllegalSharingException(J3dI18N.getString("Canvas3D27")); } if (buffer != offScreenBuffer && bufferRetained.getUsedByOffScreen()) { throw new IllegalSharingException(J3dI18N.getString("Canvas3D28")); } bufferRetained.setUsedByOffScreen(true); width = bufferRetained.width; height = bufferRetained.height; // Issues 347, 348 - assign a canvasId for off-screen Canvas3D if (manualRendering) { sendAllocateCanvasId(); } } else { width = height = 0; // Issues 347, 348 - release canvasId for off-screen Canvas3D if (manualRendering) { freeCanvasId = true; } } if ((offScreenCanvasSize.width != width) || (offScreenCanvasSize.height != height)) { if (drawable != null) { // Fix for Issue 18 and Issue 175 // Will do destroyOffScreenBuffer in the Renderer thread. sendDestroyCtxAndOffScreenBuffer(); drawable = null; } // Issue 396. Since context is invalid here, we should set it to null. ctx = null; // set the canvas dimension according to the buffer dimension offScreenCanvasSize.setSize(width, height); this.setSize(offScreenCanvasSize); if (width > 0 && height > 0) { sendCreateOffScreenBuffer(); } } else if (ctx != null) { removeCtx(); } if (freeCanvasId) { sendFreeCanvasId(); } offScreenBuffer = buffer; synchronized(dirtyMaskLock) { cvDirtyMask[0] |= MOVED_OR_RESIZED_DIRTY; cvDirtyMask[1] |= MOVED_OR_RESIZED_DIRTY; } } /** * Retrieves the off-screen buffer for this Canvas3D. * * @return the current off-screen buffer for this Canvas3D. * * @exception IllegalStateException if this Canvas3D is not in * off-screen mode. * * @since Java 3D 1.2 */ public ImageComponent2D getOffScreenBuffer() { if (!offScreen) throw new IllegalStateException(J3dI18N.getString("Canvas3D1")); return (offScreenBuffer); } /** * Schedules the rendering of a frame into this Canvas3D's * off-screen buffer. The rendering is done from the point of * view of the View object to which this Canvas3D has been added. * No rendering is performed if this Canvas3D object has not been * added to an active View. This method does not wait for the rendering * to actually happen. An application that wishes to know when * the rendering is complete must either subclass Canvas3D and * override the postSwap method, or call * waitForOffScreenRendering. * * @exception NullPointerException if the off-screen buffer is null. * @exception IllegalStateException if this Canvas3D is not in * off-screen mode, or if either the width or the height of * the associated Screen3D's size is <= 0, or if the associated * Screen3D's physical width or height is <= 0. * @exception RestrictedAccessException if an off-screen rendering * is already in process for this Canvas3D or if the Java 3D renderer * is stopped. * * @see #setOffScreenBuffer * @see Screen3D#setSize(int, int) * @see Screen3D#setSize(Dimension) * @see Screen3D#setPhysicalScreenWidth * @see Screen3D#setPhysicalScreenHeight * @see #waitForOffScreenRendering * @see #postSwap * * @since Java 3D 1.2 */ public void renderOffScreenBuffer() { if (!offScreen) throw new IllegalStateException(J3dI18N.getString("Canvas3D1")); // Issue 131: Cannot manually render to an automatic canvas. if (!manualRendering) throw new IllegalStateException(J3dI18N.getString("Canvas3D24")); // Issue 260 : Cannot render if we already have a fatal error if (fatalError) { throw new IllegalRenderingStateException(J3dI18N.getString("Canvas3D30")); } if (offScreenBuffer == null) throw new NullPointerException(J3dI18N.getString("Canvas3D10")); Dimension screenSize = screen.getSize(); if (screenSize.width <= 0) throw new IllegalStateException(J3dI18N.getString("Canvas3D8")); if (screenSize.height <= 0) throw new IllegalStateException(J3dI18N.getString("Canvas3D9")); if (screen.getPhysicalScreenWidth() <= 0.0) throw new IllegalStateException(J3dI18N.getString("Canvas3D12")); if (screen.getPhysicalScreenHeight() <= 0.0) throw new IllegalStateException(J3dI18N.getString("Canvas3D13")); if (offScreenRendering) throw new RestrictedAccessException(J3dI18N.getString("Canvas3D2")); if (!isRunning) throw new RestrictedAccessException(J3dI18N.getString("Canvas3D11")); // Fix to issue 66 if ((!active) || (pendingView == null)) { /* No rendering is performed if this Canvas3D object has not been added to an active View. */ return; } // Issue 131: moved code that determines off-screen boundary to separate // method that is called from the renderer offScreenRendering = true; // Fix to issue 66. /* This is an attempt to do the following check in one atomic operation : ((view != null) && (view.inCanvasCallback)) */ boolean inCanvasCallback = false; try { inCanvasCallback = view.inCanvasCallback; } catch (NullPointerException npe) { /* Do nothing here */ } if (inCanvasCallback) { // Here we assume that view is stable if inCanvasCallback // is true. This assumption is valid among all j3d threads as // all access to view is synchronized by MasterControl. // Issue : user threads access to view isn't synchronize hence // is model will break. if (screen.renderer == null) { // It is possible that screen.renderer = null when this View // is shared by another onScreen Canvas and this callback // is from that Canvas. In this case it need one more // round before the renderer. screen.renderer = Screen3D.deviceRendererMap.get(screen.graphicsDevice); // screen.renderer may equal to null when multiple // screen is used and this Canvas3D is in different // screen sharing the same View not yet initialize. } // if called from render call back, send a message directly to // the renderer message queue, and call renderer doWork // to do the offscreen rendering now if (Thread.currentThread() == screen.renderer) { J3dMessage createMessage = new J3dMessage(); createMessage.threads = J3dThread.RENDER_THREAD; createMessage.type = J3dMessage.RENDER_OFFSCREEN; createMessage.universe = this.view.universe; createMessage.view = this.view; createMessage.args[0] = this; screen.renderer.rendererStructure.addMessage(createMessage); // modify the args to reflect offScreen rendering screen.renderer.args = new Object[4]; screen.renderer.args[0] = new Integer(Renderer.REQUESTRENDER); screen.renderer.args[1] = this; screen.renderer.args[2] = view; // This extra argument 3 is needed in MasterControl to // test whether offscreen Rendering is used or not screen.renderer.args[3] = null; // call renderer doWork directly since we are already in // the renderer thread screen.renderer.doWork(0); } else { // XXXX: // Now we are in trouble, this will cause deadlock if // waitForOffScreenRendering() is invoked J3dMessage createMessage = new J3dMessage(); createMessage.threads = J3dThread.RENDER_THREAD; createMessage.type = J3dMessage.RENDER_OFFSCREEN; createMessage.universe = this.view.universe; createMessage.view = this.view; createMessage.args[0] = this; screen.renderer.rendererStructure.addMessage(createMessage); VirtualUniverse.mc.setWorkForRequestRenderer(); } } else if (Thread.currentThread() instanceof BehaviorScheduler) { // If called from behavior scheduler, send a message directly to // the renderer message queue. // Note that we didn't use // currentThread() == view.universe.behaviorScheduler // since the caller may be another universe Behavior // scheduler. J3dMessage createMessage = new J3dMessage(); createMessage.threads = J3dThread.RENDER_THREAD; createMessage.type = J3dMessage.RENDER_OFFSCREEN; createMessage.universe = this.view.universe; createMessage.view = this.view; createMessage.args[0] = this; screen.renderer.rendererStructure.addMessage(createMessage); VirtualUniverse.mc.setWorkForRequestRenderer(); } else { // send a message to renderBin // Fix for issue 66 : Since view might not been set yet, // we have to use pendingView instead. J3dMessage createMessage = new J3dMessage(); createMessage.threads = J3dThread.UPDATE_RENDER; createMessage.type = J3dMessage.RENDER_OFFSCREEN; createMessage.universe = this.pendingView.universe; createMessage.view = this.pendingView; createMessage.args[0] = this; createMessage.args[1] = offScreenBuffer; VirtualUniverse.mc.processMessage(createMessage); } } /** * Waits for this Canvas3D's off-screen rendering to be done. * This method will wait until the postSwap method of this * off-screen Canvas3D has completed. If this Canvas3D has not * been added to an active view or if the renderer is stopped for this * Canvas3D, then this method will return * immediately. This method must not be called from a render * callback method of an off-screen Canvas3D. * * @exception IllegalStateException if this Canvas3D is not in * off-screen mode, or if this method is called from a render * callback method of an off-screen Canvas3D. * * @see #renderOffScreenBuffer * @see #postSwap * * @since Java 3D 1.2 */ public void waitForOffScreenRendering() { if (!offScreen) { throw new IllegalStateException(J3dI18N.getString("Canvas3D1")); } if (Thread.currentThread() instanceof Renderer) { throw new IllegalStateException(J3dI18N.getString("Canvas3D31")); } while (offScreenRendering) { MasterControl.threadYield(); } } /** * Sets the location of this off-screen Canvas3D. The location is * the upper-left corner of the Canvas3D relative to the * upper-left corner of the corresponding off-screen Screen3D. * The function of this method is similar to that of * Component.setLocation for on-screen Canvas3D * objects. The default location is (0,0). * * @param x the x coordinate of the upper-left corner of * the new location. * @param y the y coordinate of the upper-left corner of * the new location. * * @exception IllegalStateException if this Canvas3D is not in * off-screen mode. * * @since Java 3D 1.2 */ public void setOffScreenLocation(int x, int y) { if (!offScreen) throw new IllegalStateException(J3dI18N.getString("Canvas3D1")); synchronized(cvLock) { offScreenCanvasLoc.setLocation(x, y); } } /** * Sets the location of this off-screen Canvas3D. The location is * the upper-left corner of the Canvas3D relative to the * upper-left corner of the corresponding off-screen Screen3D. * The function of this method is similar to that of * Component.setLocation for on-screen Canvas3D * objects. The default location is (0,0). * * @param p the point defining the upper-left corner of the new * location. * * @exception IllegalStateException if this Canvas3D is not in * off-screen mode. * * @since Java 3D 1.2 */ public void setOffScreenLocation(Point p) { if (!offScreen) throw new IllegalStateException(J3dI18N.getString("Canvas3D1")); synchronized(cvLock) { offScreenCanvasLoc.setLocation(p); } } /** * Retrieves the location of this off-screen Canvas3D. The * location is the upper-left corner of the Canvas3D relative to * the upper-left corner of the corresponding off-screen Screen3D. * The function of this method is similar to that of * Component.getLocation for on-screen Canvas3D * objects. * * @return a new point representing the upper-left corner of the * location of this off-screen Canvas3D. * * @exception IllegalStateException if this Canvas3D is not in * off-screen mode. * * @since Java 3D 1.2 */ public Point getOffScreenLocation() { if (!offScreen) throw new IllegalStateException(J3dI18N.getString("Canvas3D1")); return (new Point(offScreenCanvasLoc)); } /** * Retrieves the location of this off-screen Canvas3D and stores * it in the specified Point object. The location is the * upper-left corner of the Canvas3D relative to the upper-left * corner of the corresponding off-screen Screen3D. The function * of this method is similar to that of * Component.getLocation for on-screen Canvas3D * objects. This version of getOffScreenLocation is * useful if the caller wants to avoid allocating a new Point * object on the heap. * * @param rv Point object into which the upper-left corner of the * location of this off-screen Canvas3D is copied. * If rv is null, a new Point is allocated. * * @return rv * * @exception IllegalStateException if this Canvas3D is not in * off-screen mode. * * @since Java 3D 1.2 */ public Point getOffScreenLocation(Point rv) { if (!offScreen) throw new IllegalStateException(J3dI18N.getString("Canvas3D1")); if (rv == null) return (new Point(offScreenCanvasLoc)); else { rv.setLocation(offScreenCanvasLoc); return rv; } } void endOffScreenRendering() { ImageComponent2DRetained icRetained = (ImageComponent2DRetained)offScreenBuffer.retained; boolean isByRef = icRetained.isByReference(); ImageComponentRetained.ImageData imageData = icRetained.getImageData(false); if(!isByRef) { // If icRetained has a null image ( BufferedImage) if (imageData == null) { assert (!isByRef); icRetained.createBlankImageData(); imageData = icRetained.getImageData(false); } // Check for possible format conversion in imageData else { // Format convert imageData if format is unsupported. icRetained.evaluateExtensions(this); } // read the image from the offscreen buffer readOffScreenBuffer(ctx, icRetained.getImageFormatTypeIntValue(false), icRetained.getImageDataTypeIntValue(), imageData.get(), offScreenCanvasSize.width, offScreenCanvasSize.height); } else { icRetained.geomLock.getLock(); // Create a copy of format converted image in imageData if format is unsupported. icRetained.evaluateExtensions(this); // read the image from the offscreen buffer readOffScreenBuffer(ctx, icRetained.getImageFormatTypeIntValue(false), icRetained.getImageDataTypeIntValue(), imageData.get(), offScreenCanvasSize.width, offScreenCanvasSize.height); // For byRef, we might have to copy buffer back into // the user's referenced ImageComponent2D if(!imageData.isDataByRef()) { if(icRetained.isImageTypeSupported()) { icRetained.copyToRefImage(0); } else { // This method only handle RGBA conversion. icRetained.copyToRefImageWithFormatConversion(0); } } icRetained.geomLock.unLock(); } } /** * Synchronize and swap buffers on a double buffered canvas for * this Canvas3D object. This method should only be called if the * Java 3D renderer has been stopped. In the normal case, the renderer * automatically swaps the buffer. * This method calls the flush(true) methods of the * associated 2D and 3D graphics contexts, if they have been allocated. * * @exception RestrictedAccessException if the Java 3D renderer is * running. * @exception IllegalStateException if this Canvas3D is in * off-screen mode. * * @see #stopRenderer * @see GraphicsContext3D#flush * @see J3DGraphics2D#flush */ public void swap() { if (offScreen) throw new IllegalStateException(J3dI18N.getString("Canvas3D14")); if (isRunning) throw new RestrictedAccessException(J3dI18N.getString("Canvas3D0")); if (!firstPaintCalled) { return; } if (view != null && graphicsContext3D != null) { if ((view.universe != null) && (Thread.currentThread() == view.universe.behaviorScheduler)) { graphicsContext3D.sendRenderMessage(false, GraphicsContext3D.SWAP, null, null); } else { graphicsContext3D.sendRenderMessage(true, GraphicsContext3D.SWAP, null, null); } graphicsContext3D.runMonitor(J3dThread.WAIT); } } void doSwap() { if (firstPaintCalled && useDoubleBuffer) { try { if (validCtx && (ctx != null) && (view != null)) { synchronized (drawingSurfaceObject) { if (validCtx) { if (!drawingSurfaceObject.renderLock()) { graphicsContext3D.runMonitor(J3dThread.NOTIFY); return; } this.syncRender(ctx, true); swapBuffers(ctx, drawable); drawingSurfaceObject.unLock(); } } } } catch (NullPointerException ne) { drawingSurfaceObject.unLock(); } } // Increment the elapsedFrame for the behavior structure // to trigger any interpolators view.universe.behaviorStructure.incElapsedFrames(); graphicsContext3D.runMonitor(J3dThread.NOTIFY); } /** * Wrapper for native createNewContext method. */ Context createNewContext(Context shareCtx, boolean isSharedCtx) { Context retVal = createNewContext( this.drawable, shareCtx, isSharedCtx, this.offScreen); // compute the max available texture units maxAvailableTextureUnits = Math.max(maxTextureUnits, maxTextureImageUnits); // reset 'antialiasingSet' if new context is created for an already existing Canvas3D, // e.g. resizing offscreen Canvas3D antialiasingSet = false; return retVal; } /** * Make the context associated with the specified canvas current. */ final void makeCtxCurrent() { makeCtxCurrent(ctx, drawable); } /** * Make the specified context current. */ final void makeCtxCurrent(Context ctx) { makeCtxCurrent(ctx, drawable); } final void makeCtxCurrent(Context ctx, Drawable drawable) { if (ctx != screen.renderer.currentCtx || drawable != screen.renderer.currentDrawable) { if (!drawingSurfaceObject.isLocked()) { drawingSurfaceObject.renderLock(); useCtx(ctx, drawable); drawingSurfaceObject.unLock(); } else { useCtx(ctx, drawable); } screen.renderer.currentCtx = ctx; screen.renderer.currentDrawable = drawable; } } // Give the pipeline a chance to release the context; the Pipeline may // or may not ignore this call. void releaseCtx() { if (screen.renderer.currentCtx != null) { boolean needLock = !drawingSurfaceObject.isLocked(); if (needLock) { drawingSurfaceObject.renderLock(); } if (releaseCtx(screen.renderer.currentCtx)) { screen.renderer.currentCtx = null; screen.renderer.currentDrawable = null; } if (needLock) { drawingSurfaceObject.unLock(); } } } /** * Sets the position of the manual left eye in image-plate * coordinates. This value determines eye placement when a head * tracker is not in use and the application is directly controlling * the eye position in image-plate coordinates. * In head-tracked mode or when the windowEyePointPolicy is * RELATIVE_TO_FIELD_OF_VIEW or RELATIVE_TO_COEXISTENCE, this value * is ignored. When the * windowEyepointPolicy is RELATIVE_TO_WINDOW only the Z value is * used. * @param position the new manual left eye position */ public void setLeftManualEyeInImagePlate(Point3d position) { this.leftManualEyeInImagePlate.set(position); synchronized(dirtyMaskLock) { cvDirtyMask[0] |= EYE_IN_IMAGE_PLATE_DIRTY; cvDirtyMask[1] |= EYE_IN_IMAGE_PLATE_DIRTY; } redraw(); } /** * Sets the position of the manual right eye in image-plate * coordinates. This value determines eye placement when a head * tracker is not in use and the application is directly controlling * the eye position in image-plate coordinates. * In head-tracked mode or when the windowEyePointPolicy is * RELATIVE_TO_FIELD_OF_VIEW or RELATIVE_TO_COEXISTENCE, this value * is ignored. When the * windowEyepointPolicy is RELATIVE_TO_WINDOW only the Z value is * used. * @param position the new manual right eye position */ public void setRightManualEyeInImagePlate(Point3d position) { this.rightManualEyeInImagePlate.set(position); synchronized(dirtyMaskLock) { cvDirtyMask[0] |= EYE_IN_IMAGE_PLATE_DIRTY; cvDirtyMask[1] |= EYE_IN_IMAGE_PLATE_DIRTY; } redraw(); } /** * Retrieves the position of the user-specified, manual left eye * in image-plate * coordinates and copies that value into the object provided. * @param position the object that will receive the position */ public void getLeftManualEyeInImagePlate(Point3d position) { position.set(this.leftManualEyeInImagePlate); } /** * Retrieves the position of the user-specified, manual right eye * in image-plate * coordinates and copies that value into the object provided. * @param position the object that will receive the position */ public void getRightManualEyeInImagePlate(Point3d position) { position.set(this.rightManualEyeInImagePlate); } /** * Retrieves the actual position of the left eye * in image-plate * coordinates and copies that value into the object provided. * This value is a function of the windowEyepointPolicy, the tracking * enable flag, and the manual left eye position. * @param position the object that will receive the position */ public void getLeftEyeInImagePlate(Point3d position) { if (canvasViewCache != null) { synchronized(canvasViewCache) { position.set(canvasViewCache.getLeftEyeInImagePlate()); } } else { position.set(leftManualEyeInImagePlate); } } /** * Retrieves the actual position of the right eye * in image-plate * coordinates and copies that value into the object provided. * This value is a function of the windowEyepointPolicy, the tracking * enable flag, and the manual right eye position. * @param position the object that will receive the position */ public void getRightEyeInImagePlate(Point3d position) { if (canvasViewCache != null) { synchronized(canvasViewCache) { position.set(canvasViewCache.getRightEyeInImagePlate()); } } else { position.set(rightManualEyeInImagePlate); } } /** * Retrieves the actual position of the center eye * in image-plate * coordinates and copies that value into the object provided. * The center eye is the fictional eye half-way between the left and * right eye. * This value is a function of the windowEyepointPolicy, the tracking * enable flag, and the manual right and left eye positions. * @param position the object that will receive the position * @see #setMonoscopicViewPolicy */ // XXXX: This might not make sense for field-sequential HMD. public void getCenterEyeInImagePlate(Point3d position) { if (canvasViewCache != null) { synchronized(canvasViewCache) { position.set(canvasViewCache.getCenterEyeInImagePlate()); } } else { Point3d cenEye = new Point3d(); cenEye.add(leftManualEyeInImagePlate, rightManualEyeInImagePlate); cenEye.scale(0.5); position.set(cenEye); } } /** * Retrieves the current ImagePlate coordinates to Virtual World * coordinates transform and places it into the specified object. * @param t the Transform3D object that will receive the * transform */ // TODO: Document -- This will return the transform of left plate. public void getImagePlateToVworld(Transform3D t) { if (canvasViewCache != null) { synchronized(canvasViewCache) { t.set(canvasViewCache.getImagePlateToVworld()); } } else { t.setIdentity(); } } /** * Computes the position of the specified AWT pixel value * in image-plate * coordinates and copies that value into the object provided. * @param x the X coordinate of the pixel relative to the upper-left * hand corner of the window. * @param y the Y coordinate of the pixel relative to the upper-left * hand corner of the window. * @param imagePlatePoint the object that will receive the position in * physical image plate coordinates (relative to the lower-left * corner of the screen). */ // TODO: Document -- This transform the pixel location to the left image plate. public void getPixelLocationInImagePlate(int x, int y, Point3d imagePlatePoint) { if (canvasViewCache != null) { synchronized(canvasViewCache) { imagePlatePoint.x = canvasViewCache.getWindowXInImagePlate((double)x); imagePlatePoint.y = canvasViewCache.getWindowYInImagePlate((double)y); imagePlatePoint.z = 0.0; } } else { imagePlatePoint.set(0.0, 0.0, 0.0); } } void getPixelLocationInImagePlate(double x, double y, double z, Point3d imagePlatePoint) { if (canvasViewCache != null) { synchronized(canvasViewCache) { canvasViewCache.getPixelLocationInImagePlate( x, y, z, imagePlatePoint); } } else { imagePlatePoint.set(0.0, 0.0, 0.0); } } /** * Computes the position of the specified AWT pixel value * in image-plate * coordinates and copies that value into the object provided. * @param pixelLocation the coordinates of the pixel relative to * the upper-left hand corner of the window. * @param imagePlatePoint the object that will receive the position in * physical image plate coordinates (relative to the lower-left * corner of the screen). * * @since Java 3D 1.2 */ // TODO: Document -- This transform the pixel location to the left image plate. public void getPixelLocationInImagePlate(Point2d pixelLocation, Point3d imagePlatePoint) { if (canvasViewCache != null) { synchronized(canvasViewCache) { imagePlatePoint.x = canvasViewCache.getWindowXInImagePlate(pixelLocation.x); imagePlatePoint.y = canvasViewCache.getWindowYInImagePlate(pixelLocation.y); imagePlatePoint.z = 0.0; } } else { imagePlatePoint.set(0.0, 0.0, 0.0); } } /** * Projects the specified point from image plate coordinates * into AWT pixel coordinates. The AWT pixel coordinates are * copied into the object provided. * @param imagePlatePoint the position in * physical image plate coordinates (relative to the lower-left * corner of the screen). * @param pixelLocation the object that will receive the coordinates * of the pixel relative to the upper-left hand corner of the window. * * @since Java 3D 1.2 */ // TODO: Document -- This transform the pixel location from the left image plate. public void getPixelLocationFromImagePlate(Point3d imagePlatePoint, Point2d pixelLocation) { if (canvasViewCache != null) { synchronized(canvasViewCache) { canvasViewCache.getPixelLocationFromImagePlate( imagePlatePoint, pixelLocation); } } else { pixelLocation.set(0.0, 0.0); } } /** * Copies the current Vworld projection transform for each eye * into the specified Transform3D objects. This transform takes * points in virtual world coordinates and projects them into * clipping coordinates, which are in the range [-1,1] in * X, Y, and Z after clipping and perspective * division. * In monoscopic mode, the same projection transform will be * copied into both the right and left eye Transform3D objects. * * @param leftProjection the Transform3D object that will receive * a copy of the current projection transform for the left eye. * * @param rightProjection the Transform3D object that will receive * a copy of the current projection transform for the right eye. * * @since Java 3D 1.3 */ public void getVworldProjection(Transform3D leftProjection, Transform3D rightProjection) { if (canvasViewCache != null) { ViewPlatformRetained viewPlatformRetained = (ViewPlatformRetained)view.getViewPlatform().retained; synchronized(canvasViewCache) { leftProjection.mul(canvasViewCache.getLeftProjection(), canvasViewCache.getLeftVpcToEc()); leftProjection.mul(viewPlatformRetained.getVworldToVpc()); // caluclate right eye if in stereo, otherwise // this is the same as the left eye. if (useStereo) { rightProjection.mul(canvasViewCache.getRightProjection(), canvasViewCache.getRightVpcToEc()); rightProjection.mul(viewPlatformRetained.getVworldToVpc()); } else { rightProjection.set(leftProjection); } } } else { leftProjection.setIdentity(); rightProjection.setIdentity(); } } /** * Copies the inverse of the current Vworld projection transform * for each eye into the specified Transform3D objects. This * transform takes points in clipping coordinates, which are in * the range [-1,1] in X, Y, and Z after * clipping and perspective division, and transforms them into * virtual world coordinates. * In monoscopic mode, the same inverse projection transform will * be copied into both the right and left eye Transform3D objects. * * @param leftInverseProjection the Transform3D object that will * receive a copy of the current inverse projection transform for * the left eye. * @param rightInverseProjection the Transform3D object that will * receive a copy of the current inverse projection transform for * the right eye. * * @since Java 3D 1.3 */ public void getInverseVworldProjection(Transform3D leftInverseProjection, Transform3D rightInverseProjection) { if (canvasViewCache != null) { synchronized(canvasViewCache) { leftInverseProjection.set( canvasViewCache.getLeftCcToVworld()); // caluclate right eye if in stereo, otherwise // this is the same as the left eye. if (useStereo) { rightInverseProjection.set( canvasViewCache.getRightCcToVworld()); } else { rightInverseProjection.set(leftInverseProjection); } } } else { leftInverseProjection.setIdentity(); rightInverseProjection.setIdentity(); } } /** * Retrieves the physical width of this canvas window in meters. * @return the physical window width in meters. */ public double getPhysicalWidth() { double width = 0.0; if (canvasViewCache != null) { synchronized(canvasViewCache) { width = canvasViewCache.getPhysicalWindowWidth(); } } return width; } /** * Retrieves the physical height of this canvas window in meters. * @return the physical window height in meters. */ public double getPhysicalHeight() { double height = 0.0; if (canvasViewCache != null) { synchronized(canvasViewCache) { height = canvasViewCache.getPhysicalWindowHeight(); } } return height; } /** * Retrieves the current Virtual World coordinates to ImagePlate * coordinates transform and places it into the specified object. * @param t the Transform3D object that will receive the * transform */ // TODO: Document -- This will return the transform of left plate. public void getVworldToImagePlate(Transform3D t) { if (canvasViewCache != null) { synchronized(canvasViewCache) { t.set(canvasViewCache.getVworldToImagePlate()); } } else { t.setIdentity(); } } void getLastVworldToImagePlate(Transform3D t) { if (canvasViewCache != null) { synchronized(canvasViewCache) { t.set(canvasViewCache.getLastVworldToImagePlate()); } } else { t.setIdentity(); } } /** * Sets view that points to this Canvas3D. * @param view view object that points to this Canvas3D */ void setView(View view) { pendingView = view; // We can't set View directly here in user thread since // other threads may using canvas.view // e.g. In Renderer, we use canvas3d.view.inCallBack // before and after postSwap(), if view change in between // than view.inCallBack may never reset to false. VirtualUniverse.mc.postRequest(MasterControl.SET_VIEW, this); evaluateActive(); } void computeViewCache() { synchronized(cvLock) { if (view == null) { canvasViewCache = null; canvasViewCacheFrustum = null; } else { canvasViewCache = new CanvasViewCache(this, screen.screenViewCache, view.viewCache); // Issue 109 : construct a separate canvasViewCache for // computing view frustum canvasViewCacheFrustum = new CanvasViewCache(this, screen.screenViewCache, view.viewCache); synchronized (dirtyMaskLock) { cvDirtyMask[0] = VIEW_INFO_DIRTY; cvDirtyMask[1] = VIEW_INFO_DIRTY; } } } } /** * Gets view that points to this Canvas3D. * @return view object that points to this Canvas3D */ public View getView() { return pendingView; } /** * Returns a status flag indicating whether or not stereo * is available. * This is equivalent to: *

    * * ((Boolean)queryProperties(). * get("stereoAvailable")). * booleanValue() * *
* * @return a flag indicating whether stereo is available */ public boolean getStereoAvailable() { return ((Boolean)queryProperties().get("stereoAvailable")). booleanValue(); } /** * Turns stereo on or off. Note that this attribute is used * only when stereo is available. Enabling stereo on a Canvas3D * that does not support stereo has no effect. * @param flag enables or disables the display of stereo * * @see #queryProperties */ public void setStereoEnable(boolean flag) { stereoEnable = flag; useStereo = stereoEnable && stereoAvailable; synchronized(dirtyMaskLock) { cvDirtyMask[0] |= STEREO_DIRTY; cvDirtyMask[1] |= STEREO_DIRTY; } redraw(); } /** * Returns a status flag indicating whether or not stereo * is enabled. * @return a flag indicating whether stereo is enabled */ public boolean getStereoEnable() { return this.stereoEnable; } /** * Specifies how Java 3D generates monoscopic view. If set to * View.LEFT_EYE_VIEW, the view generated corresponds to the view as * seen from the left eye. If set to View.RIGHT_EYE_VIEW, the view * generated corresponds to the view as seen from the right * eye. If set to View.CYCLOPEAN_EYE_VIEW, the view generated * corresponds to the view as seen from the 'center eye', the * fictional eye half-way between the left and right eye. The * default monoscopic view policy is View.CYCLOPEAN_EYE_VIEW. *

* NOTE: for backward compatibility with Java 3D 1.1, if this * attribute is set to its default value of * View.CYCLOPEAN_EYE_VIEW, the monoscopic view policy in the * View object will be used. An application should not use both * the deprecated View method and this Canvas3D method at the same * time. * @param policy one of View.LEFT_EYE_VIEW, View.RIGHT_EYE_VIEW, or * View.CYCLOPEAN_EYE_VIEW. * * @exception IllegalStateException if the specified * policy is CYCLOPEAN_EYE_VIEW, the canvas is a stereo canvas, * and the viewPolicy for the associated view is HMD_VIEW * * @since Java 3D 1.2 */ public void setMonoscopicViewPolicy(int policy) { if((view !=null) && (view.viewPolicy == View.HMD_VIEW) && (monoscopicViewPolicy == View.CYCLOPEAN_EYE_VIEW) && (!useStereo)) { throw new IllegalStateException(J3dI18N.getString("View31")); } monoscopicViewPolicy = policy; synchronized(dirtyMaskLock) { cvDirtyMask[0] |= MONOSCOPIC_VIEW_POLICY_DIRTY; cvDirtyMask[1] |= MONOSCOPIC_VIEW_POLICY_DIRTY; } redraw(); } /** * Returns policy on how Java 3D generates monoscopic view. * @return policy one of View.LEFT_EYE_VIEW, View.RIGHT_EYE_VIEW or * View.CYCLOPEAN_EYE_VIEW. * * @since Java 3D 1.2 */ public int getMonoscopicViewPolicy() { return this.monoscopicViewPolicy; } /** * Returns a status flag indicating whether or not double * buffering is available. * This is equivalent to: *

    * * ((Boolean)queryProperties(). * get("doubleBufferAvailable")). * booleanValue() * *
* * @return a flag indicating whether double buffering is available. */ public boolean getDoubleBufferAvailable() { return ((Boolean)queryProperties().get("doubleBufferAvailable")). booleanValue(); } /** * Turns double buffering on or off. If double buffering * is off, all drawing is to the front buffer and no buffer swap * is done between frames. It should be stressed that running * Java 3D with double buffering disabled is not recommended. * Enabling double buffering on a Canvas3D * that does not support double buffering has no effect. * * @param flag enables or disables double buffering. * * @see #queryProperties */ public void setDoubleBufferEnable(boolean flag) { doubleBufferEnable = flag; useDoubleBuffer = doubleBufferEnable && doubleBufferAvailable; if (Thread.currentThread() == screen.renderer) { setRenderMode(ctx, FIELD_ALL, useDoubleBuffer); } redraw(); } /** * Returns a status flag indicating whether or not double * buffering is enabled. * @return a flag indicating if double buffering is enabled. */ public boolean getDoubleBufferEnable() { return doubleBufferEnable; } /** * Returns a status flag indicating whether or not scene * antialiasing is available. * This is equivalent to: *
    * * ((Boolean)queryProperties(). * get("sceneAntialiasingAvailable")). * booleanValue() * *
* * @return a flag indicating whether scene antialiasing is available. */ public boolean getSceneAntialiasingAvailable() { return ((Boolean)queryProperties().get("sceneAntialiasingAvailable")). booleanValue(); } /** * Returns a flag indicating whether or not the specified shading * language is supported. A ShaderError will be generated if an * unsupported shading language is used. * * @param shadingLanguage the shading language being queried, one of: * Shader.SHADING_LANGUAGE_GLSL or * Shader.SHADING_LANGUAGE_CG. * * @return true if the specified shading language is supported, * false otherwise. * * @since Java 3D 1.4 */ public boolean isShadingLanguageSupported(int shadingLanguage) { // Call queryProperties to ensure that the shading language flags are valid queryProperties(); if (shadingLanguage == Shader.SHADING_LANGUAGE_GLSL) return shadingLanguageGLSL; return false; } /** * Returns a read-only Map object containing key-value pairs that define * various properties for this Canvas3D. All of the keys are * String objects. The values are key-specific, but most will be * Boolean, Integer, Float, Double, or String objects. * *

* The currently defined keys are: * *

*

    * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
    Key (String)Value Type
    shadingLanguageCgBoolean
    shadingLanguageGLSLBoolean
    doubleBufferAvailableBoolean
    stereoAvailableBoolean
    sceneAntialiasingAvailableBoolean
    sceneAntialiasingNumPassesInteger
    stencilSizeInteger
    texture3DAvailableBoolean
    textureColorTableSizeInteger
    textureLodRangeAvailableBoolean
    textureLodOffsetAvailableBoolean
    textureWidthMaxInteger
    textureHeightMaxInteger
    textureBoundaryWidthMaxInteger
    textureEnvCombineAvailableBoolean
    textureCombineDot3AvailableBoolean
    textureCombineSubtractAvailableBoolean
    textureCoordSetsMaxInteger
    textureUnitStateMaxInteger
    textureImageUnitsMaxInteger
    textureImageUnitsVertexMaxInteger
    textureImageUnitsCombinedMaxInteger
    textureCubeMapAvailableBoolean
    textureDetailAvailableBoolean
    textureSharpenAvailableBoolean
    textureFilter4AvailableBoolean
    textureAnisotropicFilterDegreeMaxFloat
    textureNonPowerOfTwoAvailableBoolean
    vertexAttrsMaxInteger
    compressedGeometry.majorVersionNumberInteger
    compressedGeometry.minorVersionNumberInteger
    compressedGeometry.minorMinorVersionNumberInteger
    native.versionString
    *
* *

* The descriptions of the values returned for each key are as follows: * *

*

    *
  • * shadingLanguageCg *
      * A Boolean indicating whether or not Cg shading Language * is available for this Canvas3D. *
    *
  • * *
  • * shadingLanguageGLSL *
      * A Boolean indicating whether or not GLSL shading Language * is available for this Canvas3D. *
    *
  • * *
  • * doubleBufferAvailable *
      * A Boolean indicating whether or not double buffering * is available for this Canvas3D. This is equivalent to * the getDoubleBufferAvailable method. If this flag is false, * the Canvas3D will be rendered in single buffer mode; requests * to enable double buffering will be ignored. *
    *
  • * *
  • * stereoAvailable *
      * A Boolean indicating whether or not stereo * is available for this Canvas3D. This is equivalent to * the getStereoAvailable method. If this flag is false, * the Canvas3D will be rendered in monoscopic mode; requests * to enable stereo will be ignored. *
    *
  • * *
  • * sceneAntialiasingAvailable *
      * A Boolean indicating whether or not scene antialiasing * is available for this Canvas3D. This is equivalent to * the getSceneAntialiasingAvailable method. If this flag is false, * requests to enable scene antialiasing will be ignored. *
    *
  • * *
  • * sceneAntialiasingNumPasses *
      * An Integer indicating the number of passes scene antialiasing * requires to render a single frame for this Canvas3D. * If this value is zero, scene antialiasing is not supported. * If this value is one, multisampling antialiasing is used. * Otherwise, the number indicates the number of rendering passes * needed. *
    *
  • * *
  • * stencilSize *
      * An Integer indicating the number of stencil bits that are available * for this Canvas3D. *
    *
  • * *
  • * texture3DAvailable *
      * A Boolean indicating whether or not 3D Texture mapping * is available for this Canvas3D. If this flag is false, * 3D texture mapping is either not supported by the underlying * rendering layer or is otherwise unavailable for this * particular Canvas3D. All use of 3D texture mapping will be * ignored in this case. *
    *
  • * *
  • * textureColorTableSize *
      * An Integer indicating the maximum size of the texture color * table for this Canvas3D. If the size is 0, the texture * color table is either not supported by the underlying rendering * layer or is otherwise unavailable for this particular * Canvas3D. An attempt to use a texture color table larger than * textureColorTableSize will be ignored; no color lookup will be * performed. *
    *
  • * *
  • * textureLodRangeAvailable *
      * A Boolean indicating whether or not setting only a subset of mipmap * levels and setting a range of texture LOD are available for this * Canvas3D. * If it indicates false, setting a subset of mipmap levels and * setting a texture LOD range are not supported by the underlying * rendering layer, and an attempt to set base level, or maximum level, * or minimum LOD, or maximum LOD will be ignored. In this case, * images for all mipmap levels must be defined for the texture to be * valid. *
    *
  • * *
  • * textureLodOffsetAvailable *
      * A Boolean indicating whether or not setting texture LOD offset is * available for this Canvas3D. If it indicates false, setting * texture LOD offset is not supported by the underlying rendering * layer, and an attempt to set the texture LOD offset will be ignored. *
    *
  • * *
  • * textureWidthMax *
      * An Integer indicating the maximum texture width supported by * this Canvas3D. If the width of a texture exceeds the maximum texture * width for a Canvas3D, then the texture will be effectively disabled * for that Canvas3D. *
    *
  • * *
  • * textureHeightMax *
      * An Integer indicating the maximum texture height supported by * this Canvas3D. If the height of a texture exceeds the maximum texture * height for a Canvas3D, then the texture will be effectively disabled * for that Canvas3D. *
    *
  • * *
  • * textureBoundaryWidthMax *
      * An Integer indicating the maximum texture boundary width * supported by the underlying rendering layer for this Canvas3D. If * the maximum supported texture boundary width is 0, then texture * boundary is not supported by the underlying rendering layer. * An attempt to specify a texture boundary width > the * textureBoundaryWidthMax will effectively disable the texture. *
    *
  • * *
  • * textureEnvCombineAvailable *
      * A Boolean indicating whether or not texture environment combine * operation is supported for this Canvas3D. If it indicates false, * then texture environment combine is not supported by the * underlying rendering layer, and an attempt to specify COMBINE * as the texture mode will be ignored. The texture mode in effect * will be REPLACE. *
    *
  • * *
  • * textureCombineDot3Available *
      * A Boolean indicating whether or not texture combine mode * COMBINE_DOT3 is * supported for this Canvas3D. If it indicates false, then * texture combine mode COMBINE_DOT3 is not supported by * the underlying rendering layer, and an attempt to specify * COMBINE_DOT3 as the texture combine mode will be ignored. * The texture combine mode in effect will be COMBINE_REPLACE. *
    *
  • * *
  • * textureCombineSubtractAvailable *
      * A Boolean indicating whether or not texture combine mode * COMBINE_SUBTRACT is * supported for this Canvas3D. If it indicates false, then * texture combine mode COMBINE_SUBTRACT is not supported by * the underlying rendering layer, and an attempt to specify * COMBINE_SUBTRACT as the texture combine mode will be ignored. * The texture combine mode in effect will be COMBINE_REPLACE. *
    *
  • * *
  • * textureCoordSetsMax *
      * An Integer indicating the maximum number of texture coordinate sets * supported by the underlying rendering layer. *
    *
  • * *
  • * textureUnitStateMax *
      * An Integer indicating the maximum number of fixed-function texture units * supported by the underlying rendering layer. If the number of * application-sepcified texture unit states exceeds the maximum number * for a Canvas3D, and the fixed-function rendering pipeline is used, then * the texture will be effectively disabled for that Canvas3D. *
    *
  • * *
  • * textureImageUnitsMax *
      * An Integer indicating the maximum number of texture image units * that can be accessed by the fragment shader when programmable shaders * are used. *
    *
  • * *
  • * textureImageUnitsVertexMax *
      * An Integer indicating the maximum number of texture image units * that can be accessed by the vertex shader when programmable shaders * are used. *
    *
  • * *
  • * textureImageUnitsCombinedMax *
      * An Integer indicating the combined maximum number of texture image units * that can be accessed by the vertex shader and the fragment shader when * programmable shaders are used. *
    *
  • * *
  • * textureCubeMapAvailable *
      * A Boolean indicating whether or not texture cube map is supported * for this Canvas3D. If it indicates false, then texture cube map * is not supported by the underlying rendering layer, and an attempt * to specify NORMAL_MAP or REFLECTION_MAP as the texture generation * mode will be ignored. The texture generation mode in effect will * be SPHERE_MAP. *
    *
  • * *
  • * textureDetailAvailable *
      * A Boolean indicating whether or not detail texture is supported * for this Canvas3D. If it indicates false, then detail texture is * not supported by the underlying rendering layer, and an attempt * to specify LINEAR_DETAIL, LINEAR_DETAIL_ALPHA or * LINEAR_DETAIL_RGB as the texture magnification filter mode will * be ignored. The texture magnification filter mode in effect will * be BASE_LEVEL_LINEAR. * As of Java 3D 1.5, this property is always false. *
    *
  • * *
  • * textureSharpenAvailable *
      * A Boolean indicating whether or not sharpen texture is supported * for this Canvas3D. If it indicates false, then sharpen texture * is not supported by the underlying rendering layer, and an attempt * to specify LINEAR_SHARPEN, LINEAR_SHARPEN_ALPHA or * LINEAR_SHARPEN_RGB as the texture magnification filter mode * will be ignored. The texture magnification filter mode in effect * will be BASE_LEVEL_LINEAR. *
    *
  • * *
  • * textureFilter4Available *
      * A Boolean indicating whether or not filter4 is supported for this * Canvas3D. If it indicates flase, then filter4 is not supported * by the underlying rendering layer, and an attempt to specify * FILTER_4 as the texture minification filter mode or texture * magnification filter mode will be ignored. The texture filter mode * in effect will be BASE_LEVEL_LINEAR. *
    *
  • * *
  • * textureAnisotropicFilterDegreeMax *
      * A Float indicating the maximum degree of anisotropic filter * available for this Canvas3D. If it indicates 1.0, setting * anisotropic filter is not supported by the underlying rendering * layer, and an attempt to set anisotropic filter degree will be ignored. *
    *
  • *
  • * textureNonPowerOfTwoAvailable *
      * A Boolean indicating whether or not texture dimensions that are * not powers of two are supported for * for this Canvas3D. If it indicates false, then textures with * non power of two sizes will be ignored. Set the property * j3d.textureEnforcePowerOfTwo to revert to the pre-1.5 behavior * of throwing exceptions for non power of two textures. *
    *
  • * *
  • * vertexAttrsMax *
      * An Integer indicating the maximum number of vertex attributes * supported by the underlying rendering layer. This is in addition to * the vertex coordinate (position), color, normal, and so forth. *
    *
  • * *
  • * compressedGeometry.majorVersionNumber
    * compressedGeometry.minorVersionNumber
    * compressedGeometry.minorMinorVersionNumber *
      * Integers indicating the major, minor, and minor-minor * version numbers, respectively, of the version of compressed * geometry supported by this version of Java 3D. *
    *
  • * *
  • * native.version *
      * A String indicating the version number of the native graphics * library. The format of this string is defined by the native * library. *
    *
  • *
* * @return the properties of this Canavs3D * * @since Java 3D 1.2 */ public final Map queryProperties() { if (queryProps == null) { boolean createDummyCtx = false; synchronized (VirtualUniverse.mc.contextCreationLock) { if (ctx == null) { createDummyCtx = true; } } if (createDummyCtx) { GraphicsConfigTemplate3D.setQueryProps(this); } //create query Properties createQueryProps(); } if (fatalError) { throw new IllegalStateException(J3dI18N.getString("Canvas3D29")); } return queryProps; } void createQueryContext() { // create a dummy context to query for support of certain // extensions, the context will destroy immediately // inside the native code after setting the various // fields in this object createQueryContext(drawable, offScreen, 1, 1); // compute the max available texture units maxAvailableTextureUnits = Math.max(maxTextureUnits, maxTextureImageUnits); } /** * Creates the query properties for this Canvas. */ private void createQueryProps() { // Create lists of keys and values ArrayList keys = new ArrayList(); ArrayList values = new ArrayList(); int pass = 0; // properties not associated with graphics context keys.add("doubleBufferAvailable"); values.add(new Boolean(doubleBufferAvailable)); keys.add("stereoAvailable"); values.add(new Boolean(stereoAvailable)); keys.add("sceneAntialiasingAvailable"); values.add(new Boolean(sceneAntialiasingAvailable)); keys.add("sceneAntialiasingNumPasses"); if (sceneAntialiasingAvailable) { pass = (sceneAntialiasingMultiSamplesAvailable ? 1: Renderer.NUM_ACCUMULATION_SAMPLES); } values.add(new Integer(pass)); keys.add("stencilSize"); // Return the actual stencil size if the user owns it, otherwise // return 0 if (userStencilAvailable) { values.add(new Integer(actualStencilSize)); } else { values.add(new Integer(0)); } keys.add("compressedGeometry.majorVersionNumber"); values.add(new Integer(GeometryDecompressor.majorVersionNumber)); keys.add("compressedGeometry.minorVersionNumber"); values.add(new Integer(GeometryDecompressor.minorVersionNumber)); keys.add("compressedGeometry.minorMinorVersionNumber"); values.add(new Integer(GeometryDecompressor.minorMinorVersionNumber)); // Properties associated with graphics context keys.add("texture3DAvailable"); values.add(new Boolean((textureExtendedFeatures & TEXTURE_3D) != 0)); keys.add("textureColorTableSize"); values.add(new Integer(textureColorTableSize)); keys.add("textureEnvCombineAvailable"); values.add(new Boolean( (textureExtendedFeatures & TEXTURE_COMBINE) != 0)); keys.add("textureCombineDot3Available"); values.add(new Boolean( (textureExtendedFeatures & TEXTURE_COMBINE_DOT3) != 0)); keys.add("textureCombineSubtractAvailable"); values.add(new Boolean( (textureExtendedFeatures & TEXTURE_COMBINE_SUBTRACT) != 0)); keys.add("textureCubeMapAvailable"); values.add(new Boolean( (textureExtendedFeatures & TEXTURE_CUBE_MAP) != 0)); keys.add("textureSharpenAvailable"); values.add(new Boolean( (textureExtendedFeatures & TEXTURE_SHARPEN) != 0)); keys.add("textureDetailAvailable"); values.add(new Boolean( (textureExtendedFeatures & TEXTURE_DETAIL) != 0)); keys.add("textureFilter4Available"); values.add(new Boolean( (textureExtendedFeatures & TEXTURE_FILTER4) != 0)); keys.add("textureAnisotropicFilterDegreeMax"); values.add(new Float(anisotropicDegreeMax)); keys.add("textureWidthMax"); values.add(new Integer(textureWidthMax)); keys.add("textureHeightMax"); values.add(new Integer(textureHeightMax)); keys.add("texture3DWidthMax"); values.add(new Integer(texture3DWidthMax)); keys.add("texture3DHeightMax"); values.add(new Integer(texture3DHeightMax)); keys.add("texture3DDepthMax"); values.add(new Integer(texture3DDepthMax)); keys.add("textureBoundaryWidthMax"); values.add(new Integer(textureBoundaryWidthMax)); keys.add("textureLodRangeAvailable"); values.add(new Boolean( (textureExtendedFeatures & TEXTURE_LOD_RANGE) != 0)); keys.add("textureLodOffsetAvailable"); values.add(new Boolean( (textureExtendedFeatures & TEXTURE_LOD_OFFSET) != 0)); keys.add("textureNonPowerOfTwoAvailable"); values.add(new Boolean( (textureExtendedFeatures & TEXTURE_NON_POWER_OF_TWO) != 0)); keys.add("textureAutoMipMapGenerationAvailable"); values.add(new Boolean( (textureExtendedFeatures & TEXTURE_AUTO_MIPMAP_GENERATION) != 0)); keys.add("textureCoordSetsMax"); values.add(new Integer(maxTexCoordSets)); keys.add("textureUnitStateMax"); values.add(new Integer(maxTextureUnits)); keys.add("textureImageUnitsMax"); values.add(new Integer(maxTextureImageUnits)); keys.add("textureImageUnitsVertexMax"); values.add(new Integer(maxVertexTextureImageUnits)); keys.add("textureImageUnitsCombinedMax"); values.add(new Integer(maxCombinedTextureImageUnits)); keys.add("vertexAttrsMax"); values.add(new Integer(maxVertexAttrs)); keys.add("shadingLanguageGLSL"); values.add(new Boolean(shadingLanguageGLSL)); keys.add("native.version"); values.add(nativeGraphicsVersion); keys.add("native.vendor"); values.add(nativeGraphicsVendor); keys.add("native.renderer"); values.add(nativeGraphicsRenderer); // Now Create read-only properties object queryProps = new J3dQueryProps(keys, values); } /** * Update the view cache associated with this canvas. */ void updateViewCache(boolean flag, CanvasViewCache cvc, BoundingBox frustumBBox, boolean doInfinite) { assert cvc == null; synchronized(cvLock) { if (firstPaintCalled && (canvasViewCache != null)) { assert canvasViewCacheFrustum != null; // Issue 109 : choose the appropriate cvCache if (frustumBBox != null) { canvasViewCacheFrustum.snapshot(true); canvasViewCacheFrustum.computeDerivedData(flag, null, frustumBBox, doInfinite); } else { canvasViewCache.snapshot(false); canvasViewCache.computeDerivedData(flag, null, null, doInfinite); } } } } /** * Set depthBufferWriteEnableOverride flag */ void setDepthBufferWriteEnableOverride(boolean flag) { depthBufferWriteEnableOverride = flag; } /** * Set depthBufferEnableOverride flag */ void setDepthBufferEnableOverride(boolean flag) { depthBufferEnableOverride = flag; } // Static initializer for Canvas3D class static { VirtualUniverse.loadLibraries(); } void resetTexture(Context ctx, int texUnitIndex) { // D3D also need to reset texture attributes this.resetTextureNative(ctx, texUnitIndex); if (texUnitIndex < 0) { texUnitIndex = 0; } texUnitState[texUnitIndex].mirror = null; texUnitState[texUnitIndex].texture = null; } // reset all attributes so that everything e.g. display list, // texture will recreate again in the next frame void resetRendering() { reset(); synchronized (dirtyMaskLock) { cvDirtyMask[0] |= VIEW_INFO_DIRTY; cvDirtyMask[1] |= VIEW_INFO_DIRTY; } } void reset() { int i; currentAppear = new AppearanceRetained(); currentMaterial = new MaterialRetained(); viewFrustum = new CachedFrustum(); canvasDirty = 0xffff; lightBin = null; environmentSet = null; attributeBin = null; shaderBin = null; textureBin = null; renderMolecule = null; polygonAttributes = null; lineAttributes = null; pointAttributes = null; material = null; enableLighting = false; transparency = null; coloringAttributes = null; shaderProgram = null; texture = null; texAttrs = null; if (texUnitState != null) { TextureUnitStateRetained tus; for (i=0; i < texUnitState.length; i++) { tus = texUnitState[i]; if (tus != null) { tus.texAttrs = null; tus.texGen = null; } } } texCoordGeneration = null; renderingAttrs = null; appearance = null; appHandle = null; dirtyRenderMoleculeList.clear(); displayListResourceFreeList.clear(); dirtyDlistPerRinfoList.clear(); textureIdResourceFreeList.clear(); lightChanged = true; modelMatrix = null; modelClip = null; fog = null; sceneAmbient = new Color3f(); for (i=0; i< frameCount.length;i++) { frameCount[i] = -1; } for (i=0; i < lights.length; i++) { lights[i] = null; } if (currentLights != null) { for (i=0; i < currentLights.length; i++) { currentLights[i] = null; } } enableMask = -1; stateUpdateMask = 0; depthBufferWriteEnableOverride = false; depthBufferEnableOverride = false; depthBufferWriteEnable = true; vfPlanesValid = false; lightChanged = false; for (i=0; i < curStateToUpdate.length; i++) { curStateToUpdate[i] = null; } // Issue 362 - need to reset display lists and ctxTimeStamp in this // method, so that display lists will be recreated when canvas is // removed from a view and then added back into a view with another // canvas needToRebuildDisplayList = true; ctxTimeStamp = VirtualUniverse.mc.getContextTimeStamp(); } void resetImmediateRendering() { canvasDirty = 0xffff; ra = null; setSceneAmbient(ctx, 0.0f, 0.0f, 0.0f); disableFog(ctx); resetRenderingAttributes(ctx, false, false); resetTexture(ctx, -1); resetTexCoordGeneration(ctx); resetTextureAttributes(ctx); texUnitState[0].texAttrs = null; texUnitState[0].texGen = null; resetPolygonAttributes(ctx); resetLineAttributes(ctx); resetPointAttributes(ctx); resetTransparency(ctx, RenderMolecule.SURFACE, PolygonAttributes.POLYGON_FILL, false, false); resetColoringAttributes(ctx, 1.0f, 1.0f, 1.0f, 1.0f, false); updateMaterial(ctx, 1.0f, 1.0f, 1.0f, 1.0f); resetRendering(); makeCtxCurrent(); synchronized (dirtyMaskLock) { cvDirtyMask[0] |= VIEW_INFO_DIRTY; cvDirtyMask[1] |= VIEW_INFO_DIRTY; } needToRebuildDisplayList = true; ctxTimeStamp = VirtualUniverse.mc.getContextTimeStamp(); } @Override public Point getLocationOnScreen() { try { return super.getLocationOnScreen(); } catch (IllegalComponentStateException e) {} return new Point(); } void setProjectionMatrix(Context ctx, Transform3D projTrans) { this.projTrans = projTrans; setProjectionMatrix(ctx, projTrans.mat); } void setModelViewMatrix(Context ctx, double[] viewMatrix, Transform3D mTrans) { setModelViewMatrix(ctx, viewMatrix, mTrans.mat); if (!useStereo) { this.modelMatrix = mTrans; } else { // TODO : This seems wrong to do only for the right eye. // A possible approach is to invalidate the cache at begin of // each eye. if (rightStereoPass) { // Only set cache in right stereo pass, otherwise // if the left stereo pass set the cache value, // setModelViewMatrix() in right stereo pass will not // perform in RenderMolecules. this.modelMatrix = mTrans; } } } void setDepthBufferWriteEnable(boolean mode) { depthBufferWriteEnable = mode; setDepthBufferWriteEnable(ctx, mode); } void setNumActiveTexUnit(int n) { numActiveTexUnit = n; } int getNumActiveTexUnit() { return numActiveTexUnit; } void setLastActiveTexUnit(int n) { lastActiveTexUnit = n; } int getLastActiveTexUnit() { return lastActiveTexUnit; } // Create the texture state array void createTexUnitState() { texUnitState = new TextureUnitStateRetained[maxAvailableTextureUnits]; for (int t = 0; t < maxAvailableTextureUnits; t++) { texUnitState[t] = new TextureUnitStateRetained(); texUnitState[t].texture = null; texUnitState[t].mirror = null; } } /** * Enable separate specular color if it is not overriden by the * property j3d.disableSeparateSpecular. */ void enableSeparateSpecularColor() { boolean enable = !VirtualUniverse.mc.disableSeparateSpecularColor; updateSeparateSpecularColorEnable(ctx, enable); } // Send a createOffScreenBuffer message to Renderer (via // MasterControl) and wait for it to be done private void sendCreateOffScreenBuffer() { // Wait for the buffer to be created unless called from // a Behavior or from a Rendering thread if (!(Thread.currentThread() instanceof BehaviorScheduler) && !(Thread.currentThread() instanceof Renderer)) { offScreenBufferPending = true; } // Send message to Renderer thread to perform createOffScreenBuffer. VirtualUniverse.mc.sendCreateOffScreenBuffer(this); // Wait for off-screen buffer to be created while (offScreenBufferPending) { // Issue 364: create master control thread if needed VirtualUniverse.mc.createMasterControlThread(); MasterControl.threadYield(); } } // Send a destroyOffScreenBuffer message to Renderer (via // MasterControl) and wait for it to be done private void sendDestroyCtxAndOffScreenBuffer() { // Wait for the buffer to be destroyed unless called from // a Behavior or from a Rendering thread Thread currentThread = Thread.currentThread(); if (!(currentThread instanceof BehaviorScheduler) && !(currentThread instanceof Renderer)) { offScreenBufferPending = true; } // Fix for Issue 18 and Issue 175 // Send message to Renderer thread to perform remove Ctx and destroyOffScreenBuffer. VirtualUniverse.mc.sendDestroyCtxAndOffScreenBuffer(this); // Wait for ctx and off-screen buffer to be destroyed while (offScreenBufferPending) { // Issue 364: create master control thread if needed VirtualUniverse.mc.createMasterControlThread(); MasterControl.threadYield(); } } // Send a allocateCanvasId message to Renderer (via MasterControl) without // waiting for it to be done private void sendAllocateCanvasId() { // Send message to Renderer thread to allocate a canvasId VirtualUniverse.mc.sendAllocateCanvasId(this); } // Send a freeCanvasId message to Renderer (via MasterControl) without // waiting for it to be done private void sendFreeCanvasId() { // Send message to Renderer thread to free the canvasId VirtualUniverse.mc.sendFreeCanvasId(this); } private void removeCtx() { if ((screen != null) && (screen.renderer != null) && (ctx != null)) { VirtualUniverse.mc.postRequest(MasterControl.FREE_CONTEXT, new Object[]{this, Long.valueOf(0L), drawable, ctx}); // Fix for Issue 19 // Wait for the context to be freed unless called from // a Behavior or from a Rendering thread Thread currentThread = Thread.currentThread(); if (!(currentThread instanceof BehaviorScheduler) && !(currentThread instanceof Renderer)) { while (ctxTimeStamp != 0) { MasterControl.threadYield(); } } ctx = null; } } /** * Serialization of Canvas3D objects is not supported. * * @exception UnsupportedOperationException this method is not supported * * @since Java 3D 1.3 */ private void writeObject(java.io.ObjectOutputStream out) throws java.io.IOException { throw new UnsupportedOperationException(J3dI18N.getString("Canvas3D20")); } /** * Serialization of Canvas3D objects is not supported. * * @exception UnsupportedOperationException this method is not supported * * @since Java 3D 1.3 */ private void readObject(java.io.ObjectInputStream in) throws java.io.IOException, ClassNotFoundException { throw new UnsupportedOperationException(J3dI18N.getString("Canvas3D20")); } // mark that the current bin specified by the bit is already updated void setStateIsUpdated(int bit) { stateUpdateMask &= ~(1 << bit); } // mark that the bin specified by the bit needs to be updated void setStateToUpdate(int bit, Object bin) { stateUpdateMask |= 1 << bit; curStateToUpdate[bit] = bin; } // update LightBin, EnvironmentSet, AttributeBin & ShaderBin if neccessary // according to the stateUpdateMask static int ENV_STATE_MASK = (1 << LIGHTBIN_BIT) | (1 << ENVIRONMENTSET_BIT) | (1 << ATTRIBUTEBIN_BIT) | (1 << SHADERBIN_BIT); void updateEnvState() { if ((stateUpdateMask & ENV_STATE_MASK) == 0) return; if ((stateUpdateMask & (1 << LIGHTBIN_BIT)) != 0) { ((LightBin)curStateToUpdate[LIGHTBIN_BIT]).updateAttributes(this); } if ((stateUpdateMask & (1 << ENVIRONMENTSET_BIT)) != 0) { ((EnvironmentSet) curStateToUpdate[ENVIRONMENTSET_BIT]).updateAttributes(this); } if ((stateUpdateMask & (1 << ATTRIBUTEBIN_BIT)) != 0) { ((AttributeBin) curStateToUpdate[ATTRIBUTEBIN_BIT]).updateAttributes(this); } if ((stateUpdateMask & (1 << SHADERBIN_BIT)) != 0) { ((ShaderBin) curStateToUpdate[SHADERBIN_BIT]).updateAttributes(this); } // reset the state update mask for those environment state bits stateUpdateMask &= ~ENV_STATE_MASK; } /** * update state if neccessary according to the stateUpdatedMask */ void updateState( int dirtyBits) { if (stateUpdateMask == 0) return; updateEnvState(); if ((stateUpdateMask & (1 << TEXTUREBIN_BIT)) != 0) { ((TextureBin) curStateToUpdate[TEXTUREBIN_BIT]).updateAttributes(this); } if ((stateUpdateMask & (1 << RENDERMOLECULE_BIT)) != 0) { ((RenderMolecule) curStateToUpdate[RENDERMOLECULE_BIT]).updateAttributes(this, dirtyBits); } if ((stateUpdateMask & (1 << TRANSPARENCY_BIT)) != 0) { ((RenderMolecule)curStateToUpdate[RENDERMOLECULE_BIT]).updateTransparencyAttributes(this); stateUpdateMask &= ~(1 << TRANSPARENCY_BIT); } // reset state update mask stateUpdateMask = 0; } // This method updates this Texture2D for raster. // Note : No multi-texture is not used. void updateTextureForRaster(Texture2DRetained texture) { // Setup texture and texture attributes for texture unit 0. Pipeline.getPipeline().updateTextureUnitState(ctx, 0, true); setLastActiveTexUnit(0); setNumActiveTexUnit(1); texture.updateNative(this); resetTexCoordGeneration(ctx); resetTextureAttributes(ctx); for(int i=1; i < maxTextureUnits; i++) { resetTexture(ctx, i); } // set the active texture unit back to 0 activeTextureUnit(ctx, 0); // Force the next textureBin to reload. canvasDirty |= Canvas3D.TEXTUREBIN_DIRTY | Canvas3D.TEXTUREATTRIBUTES_DIRTY; } void restoreTextureBin() { // Need to check TextureBin's shaderBin for null // TextureBin can get clear() if there isn't any RM under it. if((textureBin != null) && (textureBin.shaderBin != null)) { textureBin.updateAttributes(this); } } void textureFill(RasterRetained raster, Point2d winCoord, float mapZ, float alpha) { int winWidth = canvasViewCache.getCanvasWidth(); int winHeight = canvasViewCache.getCanvasHeight(); int rasterImageWidth = raster.image.width; int rasterImageHeight = raster.image.height; float texMinU = 0, texMinV = 0, texMaxU = 0, texMaxV = 0; float mapMinX = 0, mapMinY = 0, mapMaxX = 0, mapMaxY = 0; Point rasterSrcOffset = new Point(); raster.getSrcOffset(rasterSrcOffset); Dimension rasterSize = new Dimension(); raster.getSize(rasterSize); // System.err.println("rasterImageWidth " + rasterImageWidth + " rasterImageHeight " + rasterImageHeight); // System.err.println("rasterSrcOffset " + rasterSrcOffset + " rasterSize " + rasterSize); int rasterMinX = rasterSrcOffset.x; int rasterMaxX = rasterSrcOffset.x + rasterSize.width; int rasterMinY = rasterSrcOffset.y; int rasterMaxY = rasterSrcOffset.y + rasterSize.height; if ((rasterMinX >= rasterImageWidth) || (rasterMinY >= rasterImageHeight) || (rasterMaxX <= 0) || (rasterMaxY <= 0)) { return; } if (rasterMinX < 0) { rasterMinX = 0; } if (rasterMinY < 0) { rasterMinY = 0; } if (rasterMaxX > rasterImageWidth) { rasterMaxX = rasterImageWidth; } if (rasterMaxY > rasterImageHeight) { rasterMaxY = rasterImageHeight; } texMinU = (float) rasterMinX / (float) rasterImageWidth; texMaxU = (float) rasterMaxX / (float) rasterImageWidth; mapMinX = (float) winCoord.x / (float) winWidth; mapMaxX = (float) (winCoord.x + (rasterMaxX - rasterMinX)) / (float) winWidth; if (raster.image.isYUp()) { texMinV = (float) rasterMinY / (float) rasterImageHeight; texMaxV = (float) rasterMaxY / (float) rasterImageHeight; } else { // System.err.println("In yUp is false case"); texMinV = 1.0f - (float) rasterMaxY / (float) rasterImageHeight; texMaxV = 1.0f - (float) rasterMinY / (float) rasterImageHeight; } mapMinY = 1.0f - ((float) (winCoord.y + (rasterMaxY - rasterMinY)) / (float) winHeight); mapMaxY = 1.0f - ((float) winCoord.y / (float) winHeight); textureFillRaster(ctx, texMinU, texMaxU, texMinV, texMaxV, mapMinX, mapMaxX, mapMinY, mapMaxY, mapZ, alpha, raster.image.useBilinearFilter()); } void textureFill(BackgroundRetained bg, int winWidth, int winHeight) { final int maxX = bg.image.width; final int maxY = bg.image.height; // System.err.println("maxX " + maxX + " maxY " + maxY); float xzoom = (float)winWidth / maxX; float yzoom = (float)winHeight / maxY; float zoom = 0; float texMinU = 0, texMinV = 0, texMaxU = 0, texMaxV = 0, adjustV = 0; float mapMinX = 0, mapMinY = 0, mapMaxX = 0, mapMaxY = 0; float halfWidth = 0, halfHeight = 0; switch (bg.imageScaleMode) { case Background.SCALE_NONE: texMinU = 0.0f; texMinV = 0.0f; texMaxU = 1.0f; texMaxV = 1.0f; halfWidth = (float)winWidth/2.0f; halfHeight = (float)winHeight/2.0f; mapMinX = (float) ((0 - halfWidth)/halfWidth); mapMinY = (float) ((0 - halfHeight)/halfHeight); mapMaxX = (float) ((maxX - halfWidth)/halfWidth); mapMaxY = (float) ((maxY - halfHeight)/halfHeight); adjustV = ((float)winHeight - (float)maxY)/halfHeight; mapMinY += adjustV; mapMaxY += adjustV; break; case Background.SCALE_FIT_MIN: zoom = Math.min(xzoom, yzoom); texMinU = 0.0f; texMinV = 0.0f; texMaxU = 1.0f; texMaxV = 1.0f; mapMinX = -1.0f; mapMaxY = 1.0f; if (xzoom < yzoom) { mapMaxX = 1.0f; mapMinY = -1.0f + 2.0f * ( 1.0f - zoom * (float)maxY/(float) winHeight ); } else { mapMaxX = -1.0f + zoom * (float)maxX/winWidth * 2; mapMinY = -1.0f; } break; case Background.SCALE_FIT_MAX: zoom = Math.max(xzoom, yzoom); mapMinX = -1.0f; mapMinY = -1.0f; mapMaxX = 1.0f; mapMaxY = 1.0f; if (xzoom < yzoom) { texMinU = 0.0f; texMinV = 0.0f; texMaxU = (float)winWidth/maxX/zoom; texMaxV = 1.0f; } else { texMinU = 0.0f; texMinV = 1.0f - (float)winHeight/maxY/zoom; texMaxU = 1.0f; texMaxV = 1.0f; } break; case Background.SCALE_FIT_ALL: texMinU = 0.0f; texMinV = 0.0f; texMaxU = 1.0f; texMaxV = 1.0f; mapMinX = -1.0f; mapMinY = -1.0f; mapMaxX = 1.0f; mapMaxY = 1.0f; break; case Background.SCALE_REPEAT: texMinU = 0.0f; texMinV = - yzoom; texMaxU = xzoom; texMaxV = 0.0f; mapMinX = -1.0f; mapMinY = -1.0f; mapMaxX = 1.0f; mapMaxY = 1.0f; break; case Background.SCALE_NONE_CENTER: // TODO : Why is there a zoom ? if(xzoom >= 1.0f){ texMinU = 0.0f; texMaxU = 1.0f; mapMinX = -(float)maxX/winWidth; mapMaxX = (float)maxX/winWidth; } else { texMinU = 0.5f - (float)winWidth/maxX/2; texMaxU = 0.5f + (float)winWidth/maxX/2; mapMinX = -1.0f; mapMaxX = 1.0f; } if (yzoom >= 1.0f) { texMinV = 0.0f; texMaxV = 1.0f; mapMinY = -(float)maxY/winHeight; mapMaxY = (float)maxY/winHeight; } else { texMinV = 0.5f - (float)winHeight/maxY/2; texMaxV = 0.5f + (float)winHeight/maxY/2; mapMinY = -1.0f; mapMaxY = 1.0f; } break; } // System.err.println("Java 3D : mapMinX " + mapMinX + " mapMinY " + mapMinY + // " mapMaxX " + mapMaxX + " mapMaxY " + mapMaxY); textureFillBackground(ctx, texMinU, texMaxU, texMinV, texMaxV, mapMinX, mapMaxX, mapMinY, mapMaxY, bg.image.useBilinearFilter()); } void clear(BackgroundRetained bg, int winWidth, int winHeight) { // Issue 239 - clear stencil if requested and available // Note that this is a partial solution, since we eventually want an API // to control this. boolean clearStencil = VirtualUniverse.mc.stencilClear && userStencilAvailable; clear(ctx, bg.color.x, bg.color.y, bg.color.z, clearStencil); // TODO : This is a bug on not mirror bg. Will fix this as a bug after 1.5 beta. // For now, as a workaround, we will check bg.image and bg.image.imageData not null. if((bg.image != null) && (bg.image.imageData != null)) { // setup Texture pipe. updateTextureForRaster(bg.texture); textureFill(bg, winWidth, winHeight); // Restore texture pipe. restoreTextureBin(); } } /** * obj is either TextureRetained or DetailTextureImage * if obj is DetailTextureImage then we just clear * the resourceCreationMask of all the formats * no matter it is create or not since we don't * remember the format information for simplicity. * We don't need to check duplicate value of id in the * table since this procedure is invoke only when id * of texture is -1 one time only. * This is always call from Renderer thread. */ void addTextureResource(int id, TextureRetained obj) { if (id <= 0) { return; } if (useSharedCtx) { screen.renderer.addTextureResource(id, obj); } else { // This will replace the previous key if exists if (textureIDResourceTable.size() <= id) { for (int i=textureIDResourceTable.size(); i < id; i++) { textureIDResourceTable.add(null); } textureIDResourceTable.add(obj); } else { textureIDResourceTable.set(id, obj); } } } // handle free resource in the FreeList void freeResourcesInFreeList(Context ctx) { Iterator it; int val; // free resource for those canvases that // don't use shared ctx if (displayListResourceFreeList.size() > 0) { for (it = displayListResourceFreeList.iterator(); it.hasNext();) { val = it.next().intValue(); if (val <= 0) { continue; } Canvas3D.freeDisplayList(ctx, val); } displayListResourceFreeList.clear(); } if (textureIdResourceFreeList.size() > 0) { for (it = textureIdResourceFreeList.iterator(); it.hasNext();) { val = it.next().intValue(); if (val <= 0) { continue; } if (val >= textureIDResourceTable.size()) { System.err.println("Error in freeResourcesInFreeList : ResourceIDTableSize = " + textureIDResourceTable.size() + " val = " + val); } else { TextureRetained tex = textureIDResourceTable.get(val); if (tex != null) { synchronized (tex.resourceLock) { tex.resourceCreationMask &= ~canvasBit; if (tex.resourceCreationMask == 0) { tex.freeTextureId(val); } } } textureIDResourceTable.set(val, null); } Canvas3D.freeTexture(ctx, val); } textureIdResourceFreeList.clear(); } } void freeContextResources(Renderer rdr, boolean freeBackground, Context ctx) { TextureRetained tex; // Just return if we don't have a valid renderer or context if (rdr == null || ctx == null) { return; } if (freeBackground) { // Dispose of Graphics2D Texture if (graphics2D != null) { graphics2D.dispose(); } } for (int id = textureIDResourceTable.size()-1; id >= 0; id--) { tex = textureIDResourceTable.get(id); if (tex == null) { continue; } // Issue 403 : this assertion doesn't hold in some cases // TODO KCR : determine why this is the case // assert id == ((TextureRetained)obj).objectId; Canvas3D.freeTexture(ctx, id); synchronized (tex.resourceLock) { tex.resourceCreationMask &= ~canvasBit; if (tex.resourceCreationMask == 0) { tex.freeTextureId(id); } } } textureIDResourceTable.clear(); freeAllDisplayListResources(ctx); } void freeAllDisplayListResources(Context ctx) { if ((view != null) && (view.renderBin != null)) { view.renderBin.freeAllDisplayListResources(this, ctx); if (useSharedCtx) { // We need to rebuild all other Canvas3D resource // shared by this Canvas3D. Since we didn't // remember resource in Renderer but RenderBin only. if ((screen != null) && (screen.renderer != null)) { screen.renderer.needToRebuildDisplayList = true; } } } } // ***************************************************************** // Wrappers for native methods go below here // ***************************************************************** // This is the native method for creating the underlying graphics context. private Context createNewContext(Drawable drawable, Context shareCtx, boolean isSharedCtx, boolean offScreen) { return Pipeline.getPipeline().createNewContext(this, drawable, shareCtx, isSharedCtx, offScreen); } private void createQueryContext(Drawable drawable, boolean offScreen, int width, int height) { Pipeline.getPipeline().createQueryContext(this, drawable, offScreen, width, height); } // This is the native for creating offscreen buffer Drawable createOffScreenBuffer(Context ctx, int width, int height) { return Pipeline.getPipeline().createOffScreenBuffer(this, ctx, width, height); } void destroyOffScreenBuffer(Context ctx, Drawable drawable) { assert drawable != null; Pipeline.getPipeline().destroyOffScreenBuffer(this, ctx, drawable); } // This is the native for reading the image from the offscreen buffer private void readOffScreenBuffer(Context ctx, int format, int type, Object data, int width, int height) { Pipeline.getPipeline().readOffScreenBuffer(this, ctx, format, type, data, width, height); } // The native method for swapBuffers void swapBuffers(Context ctx, Drawable drawable) { Pipeline.getPipeline().swapBuffers(this, ctx, drawable); } // ----------------------------------------------------------------------------- // native method for setting Material when no material is present void updateMaterial(Context ctx, float r, float g, float b, float a) { Pipeline.getPipeline().updateMaterialColor(ctx, r, g, b, a); } static void destroyContext(Drawable drawable, Context ctx) { Pipeline.getPipeline().destroyContext(drawable, ctx); } // This is the native method for doing accumulation. void accum(Context ctx, float value) { Pipeline.getPipeline().accum(ctx, value); } // This is the native method for doing accumulation return. void accumReturn(Context ctx) { Pipeline.getPipeline().accumReturn(ctx); } // This is the native method for clearing the accumulation buffer. void clearAccum(Context ctx) { Pipeline.getPipeline().clearAccum(ctx); } // This is the native method for getting the number of lights the underlying // native library can support. int getNumCtxLights(Context ctx) { return Pipeline.getPipeline().getNumCtxLights(ctx); } // Native method for decal 1st child setup boolean decal1stChildSetup(Context ctx) { return Pipeline.getPipeline().decal1stChildSetup(ctx); } // Native method for decal nth child setup void decalNthChildSetup(Context ctx) { Pipeline.getPipeline().decalNthChildSetup(ctx); } // Native method for decal reset void decalReset(Context ctx, boolean depthBufferEnable) { Pipeline.getPipeline().decalReset(ctx, depthBufferEnable); } // Native method for decal reset void ctxUpdateEyeLightingEnable(Context ctx, boolean localEyeLightingEnable) { Pipeline.getPipeline().ctxUpdateEyeLightingEnable(ctx, localEyeLightingEnable); } // The following three methods are used in multi-pass case // native method for setting blend color void setBlendColor(Context ctx, float red, float green, float blue, float alpha) { Pipeline.getPipeline().setBlendColor(ctx, red, green, blue, alpha); } // native method for setting blend func void setBlendFunc(Context ctx, int src, int dst) { Pipeline.getPipeline().setBlendFunc(ctx, src, dst); } // native method for setting fog enable flag void setFogEnableFlag(Context ctx, boolean enableFlag) { Pipeline.getPipeline().setFogEnableFlag(ctx, enableFlag); } boolean isAntialiasingSet() { return antialiasingSet; } // Setup the full scene antialising in D3D and ogl when GL_ARB_multisamle supported void setFullSceneAntialiasing(Context ctx, boolean enable) { Pipeline.getPipeline().setFullSceneAntialiasing(ctx, enable); antialiasingSet = enable; } // Native method to update separate specular color control void updateSeparateSpecularColorEnable(Context ctx, boolean control) { Pipeline.getPipeline().updateSeparateSpecularColorEnable(ctx, control); } // True under Solaris, // False under windows when display mode <= 8 bit private boolean validGraphicsMode() { return Pipeline.getPipeline().validGraphicsMode(); } // native method for setting light enables void setLightEnables(Context ctx, long enableMask, int maxLights) { Pipeline.getPipeline().setLightEnables(ctx, enableMask, maxLights); } // native method for setting scene ambient void setSceneAmbient(Context ctx, float red, float green, float blue) { Pipeline.getPipeline().setSceneAmbient(ctx, red, green, blue); } // native method for disabling fog void disableFog(Context ctx) { Pipeline.getPipeline().disableFog(ctx); } // native method for disabling modelClip void disableModelClip(Context ctx) { Pipeline.getPipeline().disableModelClip(ctx); } // native method for setting default RenderingAttributes void resetRenderingAttributes(Context ctx, boolean depthBufferWriteEnableOverride, boolean depthBufferEnableOverride) { Pipeline.getPipeline().resetRenderingAttributes(ctx, depthBufferWriteEnableOverride, depthBufferEnableOverride); } // native method for setting default texture void resetTextureNative(Context ctx, int texUnitIndex) { Pipeline.getPipeline().resetTextureNative(ctx, texUnitIndex); } // native method for activating a particular texture unit void activeTextureUnit(Context ctx, int texUnitIndex) { Pipeline.getPipeline().activeTextureUnit(ctx, texUnitIndex); } // native method for setting default TexCoordGeneration void resetTexCoordGeneration(Context ctx) { Pipeline.getPipeline().resetTexCoordGeneration(ctx); } // native method for setting default TextureAttributes void resetTextureAttributes(Context ctx) { Pipeline.getPipeline().resetTextureAttributes(ctx); } // native method for setting default PolygonAttributes void resetPolygonAttributes(Context ctx) { Pipeline.getPipeline().resetPolygonAttributes(ctx); } // native method for setting default LineAttributes void resetLineAttributes(Context ctx) { Pipeline.getPipeline().resetLineAttributes(ctx); } // native method for setting default PointAttributes void resetPointAttributes(Context ctx) { Pipeline.getPipeline().resetPointAttributes(ctx); } // native method for setting default TransparencyAttributes void resetTransparency(Context ctx, int geometryType, int polygonMode, boolean lineAA, boolean pointAA) { Pipeline.getPipeline().resetTransparency(ctx, geometryType, polygonMode, lineAA, pointAA); } // native method for setting default ColoringAttributes void resetColoringAttributes(Context ctx, float r, float g, float b, float a, boolean enableLight) { Pipeline.getPipeline().resetColoringAttributes(ctx, r, g, b, a, enableLight); } /** * This native method makes sure that the rendering for this canvas * gets done now. */ void syncRender(Context ctx, boolean wait) { Pipeline.getPipeline().syncRender(ctx, wait); } // The native method that sets this ctx to be the current one static boolean useCtx(Context ctx, Drawable drawable) { return Pipeline.getPipeline().useCtx(ctx, drawable); } // Give the Pipeline a chance to release the context. The return // value indicates whether the context was released. private boolean releaseCtx(Context ctx) { return Pipeline.getPipeline().releaseCtx(ctx); } void clear(Context ctx, float r, float g, float b, boolean clearStencil) { Pipeline.getPipeline().clear(ctx, r, g, b, clearStencil); } void textureFillBackground(Context ctx, float texMinU, float texMaxU, float texMinV, float texMaxV, float mapMinX, float mapMaxX, float mapMinY, float mapMaxY, boolean useBiliearFilter) { Pipeline.getPipeline().textureFillBackground(ctx, texMinU, texMaxU, texMinV, texMaxV, mapMinX, mapMaxX, mapMinY, mapMaxY, useBiliearFilter); } void textureFillRaster(Context ctx, float texMinU, float texMaxU, float texMinV, float texMaxV, float mapMinX, float mapMaxX, float mapMinY, float mapMaxY, float mapZ, float alpha, boolean useBiliearFilter) { Pipeline.getPipeline().textureFillRaster(ctx, texMinU, texMaxU, texMinV, texMaxV, mapMinX, mapMaxX, mapMinY, mapMaxY, mapZ, alpha, useBiliearFilter); } void executeRasterDepth(Context ctx, float posX, float posY, float posZ, int srcOffsetX, int srcOffsetY, int rasterWidth, int rasterHeight, int depthWidth, int depthHeight, int depthType, Object depthData) { Pipeline.getPipeline().executeRasterDepth(ctx, posX, posY, posZ, srcOffsetX, srcOffsetY, rasterWidth, rasterHeight, depthWidth, depthHeight, depthType, depthData); } // The native method for setting the ModelView matrix. void setModelViewMatrix(Context ctx, double[] viewMatrix, double[] modelMatrix) { Pipeline.getPipeline().setModelViewMatrix(ctx, viewMatrix, modelMatrix); } // The native method for setting the Projection matrix. void setProjectionMatrix(Context ctx, double[] projMatrix) { Pipeline.getPipeline().setProjectionMatrix(ctx, projMatrix); } // The native method for setting the Viewport. void setViewport(Context ctx, int x, int y, int width, int height) { Pipeline.getPipeline().resizeOffscreenLayer(this, width, height); Pipeline.getPipeline().setViewport(ctx, x, y, width, height); } // used for display Lists void newDisplayList(Context ctx, int displayListId) { Pipeline.getPipeline().newDisplayList(ctx, displayListId); } void endDisplayList(Context ctx) { Pipeline.getPipeline().endDisplayList(ctx); } void callDisplayList(Context ctx, int id, boolean isNonUniformScale) { Pipeline.getPipeline().callDisplayList(ctx, id, isNonUniformScale); } static void freeDisplayList(Context ctx, int id) { Pipeline.getPipeline().freeDisplayList(ctx, id); } static void freeTexture(Context ctx, int id) { Pipeline.getPipeline().freeTexture(ctx, id); } static int generateTexID(Context ctx) { return Pipeline.getPipeline().generateTexID(ctx); } void texturemapping(Context ctx, int px, int py, int xmin, int ymin, int xmax, int ymax, int texWidth, int texHeight, int rasWidth, int format, int objectId, byte[] image, int winWidth, int winHeight) { Pipeline.getPipeline().texturemapping(ctx, px, py, xmin, ymin, xmax, ymax, texWidth, texHeight, rasWidth, format, objectId, image, winWidth, winHeight); } boolean initTexturemapping(Context ctx, int texWidth, int texHeight, int objectId) { return Pipeline.getPipeline().initTexturemapping(ctx, texWidth, texHeight, objectId); } // Set internal render mode to one of FIELD_ALL, FIELD_LEFT or // FIELD_RIGHT. Note that it is up to the caller to ensure that // stereo is available before setting the mode to FIELD_LEFT or // FIELD_RIGHT. The boolean isTRUE for double buffered mode, FALSE // foe single buffering. void setRenderMode(Context ctx, int mode, boolean doubleBuffer) { Pipeline.getPipeline().setRenderMode(ctx, mode, doubleBuffer); } // Set glDepthMask. void setDepthBufferWriteEnable(Context ctx, boolean mode) { Pipeline.getPipeline().setDepthBufferWriteEnable(ctx, mode); } // Methods to get actual capabilities from Canvas3D boolean hasDoubleBuffer() { return Pipeline.getPipeline().hasDoubleBuffer(this); } boolean hasStereo() { return Pipeline.getPipeline().hasStereo(this); } int getStencilSize() { return Pipeline.getPipeline().getStencilSize(this); } boolean hasSceneAntialiasingMultisample() { return Pipeline.getPipeline().hasSceneAntialiasingMultisample(this); } boolean hasSceneAntialiasingAccum() { return Pipeline.getPipeline().hasSceneAntialiasingAccum(this); } }