Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.scijava.java3d.IndexedTriangleFanArrayRetained Maven / Gradle / Ivy
/*
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
package org.scijava.java3d;
import org.scijava.vecmath.Point3d;
/**
* The IndexedTriangleFanArray object draws an array of vertices as a set of
* connected triangle fans. An array of per-strip
* vertex counts specifies where the separate strips (fans) appear
* in the vertex array. For every strip in the set,
* each vertex, beginning with the third vertex in the array,
* defines a triangle to be drawn using the current vertex,
* the previous vertex and the first vertex. This can be thought of
* as a collection of convex polygons.
*/
class IndexedTriangleFanArrayRetained extends IndexedGeometryStripArrayRetained {
IndexedTriangleFanArrayRetained(){
geoType = GEO_TYPE_INDEXED_TRI_FAN_SET;
}
@Override
boolean intersect(PickShape pickShape, PickInfo pickInfo, int flags, Point3d iPnt,
GeometryRetained geom, int geomIndex) {
Point3d pnts[] = new Point3d[3];
double sdist[] = new double[1];
double minDist = Double.MAX_VALUE;
double x = 0, y = 0, z = 0;
int i = 0;
int j, scount, count = 0;
pnts[0] = new Point3d();
pnts[1] = new Point3d();
pnts[2] = new Point3d();
int[] vtxIndexArr = new int[3];
switch (pickShape.getPickType()) {
case PickShape.PICKRAY:
PickRay pickRay= (PickRay) pickShape;
while (i < stripIndexCounts.length) {
for(int k=0; k<2; k++) {
vtxIndexArr[k] = indexCoord[count];
getVertexData(indexCoord[count++], pnts[k]);
}
scount = stripIndexCounts[i++];
for (j=2; j < scount; j++) {
vtxIndexArr[2] = indexCoord[count];
getVertexData(indexCoord[count++], pnts[2]);
if (intersectRay(pnts, pickRay, sdist, iPnt)) {
if (flags == 0) {
return true;
}
if (sdist[0] < minDist) {
minDist = sdist[0];
x = iPnt.x;
y = iPnt.y;
z = iPnt.z;
if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
if((flags & PickInfo.ALL_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
pnts[1].set(pnts[2]);
vtxIndexArr[1] = vtxIndexArr[2];
}
}
break;
case PickShape.PICKSEGMENT:
PickSegment pickSegment = (PickSegment) pickShape;
while (i < stripIndexCounts.length) {
for(int k=0; k<2; k++) {
vtxIndexArr[k] = indexCoord[count];
getVertexData(indexCoord[count++], pnts[k]);
}
scount = stripIndexCounts[i++];
for (j=2; j < scount; j++) {
vtxIndexArr[2] = indexCoord[count];
getVertexData(indexCoord[count++], pnts[2]);
if (intersectSegment(pnts, pickSegment.start,
pickSegment.end, sdist, iPnt)) {
if (flags == 0) {
return true;
}
if (sdist[0] < minDist) {
minDist = sdist[0];
x = iPnt.x;
y = iPnt.y;
z = iPnt.z;
if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
if((flags & PickInfo.ALL_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
pnts[1].set(pnts[2]);
vtxIndexArr[1] = vtxIndexArr[2];
}
}
break;
case PickShape.PICKBOUNDINGBOX:
BoundingBox bbox = (BoundingBox)
((PickBounds) pickShape).bounds;
while (i < stripIndexCounts.length) {
for(int k=0; k<2; k++) {
vtxIndexArr[k] = indexCoord[count];
getVertexData(indexCoord[count++], pnts[k]);
}
scount = stripIndexCounts[i++];
for (j=2; j < scount; j++) {
vtxIndexArr[2] = indexCoord[count];
getVertexData(indexCoord[count++], pnts[2]);
if (intersectBoundingBox(pnts, bbox, sdist, iPnt)) {
if (flags == 0) {
return true;
}
if (sdist[0] < minDist) {
minDist = sdist[0];
x = iPnt.x;
y = iPnt.y;
z = iPnt.z;
if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
if((flags & PickInfo.ALL_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
pnts[1].set(pnts[2]);
vtxIndexArr[1] = vtxIndexArr[2];
}
}
break;
case PickShape.PICKBOUNDINGSPHERE:
BoundingSphere bsphere = (BoundingSphere)
((PickBounds) pickShape).bounds;
while (i < stripIndexCounts.length) {
for(int k=0; k<2; k++) {
vtxIndexArr[k] = indexCoord[count];
getVertexData(indexCoord[count++], pnts[k]);
}
scount = stripIndexCounts[i++];
for (j=2; j < scount; j++) {
vtxIndexArr[2] = indexCoord[count];
getVertexData(indexCoord[count++], pnts[2]);
if (intersectBoundingSphere(pnts, bsphere, sdist,
iPnt)) {
if (flags == 0) {
return true;
}
if (sdist[0] < minDist) {
minDist = sdist[0];
x = iPnt.x;
y = iPnt.y;
z = iPnt.z;
if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
if((flags & PickInfo.ALL_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
pnts[1].set(pnts[2]);
vtxIndexArr[1] = vtxIndexArr[2];
}
}
break;
case PickShape.PICKBOUNDINGPOLYTOPE:
BoundingPolytope bpolytope = (BoundingPolytope)
((PickBounds) pickShape).bounds;
while (i < stripIndexCounts.length) {
for(int k=0; k<2; k++) {
vtxIndexArr[k] = indexCoord[count];
getVertexData(indexCoord[count++], pnts[k]);
}
scount = stripIndexCounts[i++];
for (j=2; j < scount; j++) {
vtxIndexArr[2] = indexCoord[count];
getVertexData(indexCoord[count++], pnts[2]);
if (intersectBoundingPolytope(pnts, bpolytope,
sdist, iPnt)) {
if (flags == 0) {
return true;
}
if (sdist[0] < minDist) {
minDist = sdist[0];
x = iPnt.x;
y = iPnt.y;
z = iPnt.z;
if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
if((flags & PickInfo.ALL_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
pnts[1].set(pnts[2]);
vtxIndexArr[1] = vtxIndexArr[2];
}
}
break;
case PickShape.PICKCYLINDER:
PickCylinder pickCylinder= (PickCylinder) pickShape;
while (i < stripIndexCounts.length) {
for(int k=0; k<2; k++) {
vtxIndexArr[k] = indexCoord[count];
getVertexData(indexCoord[count++], pnts[k]);
}
scount = stripIndexCounts[i++];
for (j=2; j < scount; j++) {
vtxIndexArr[2] = indexCoord[count];
getVertexData(indexCoord[count++], pnts[2]);
if (intersectCylinder(pnts, pickCylinder, sdist, iPnt)) {
if (flags == 0) {
return true;
}
if (sdist[0] < minDist) {
minDist = sdist[0];
x = iPnt.x;
y = iPnt.y;
z = iPnt.z;
if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
if((flags & PickInfo.ALL_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
pnts[1].set(pnts[2]);
vtxIndexArr[1] = vtxIndexArr[2];
}
}
break;
case PickShape.PICKCONE:
PickCone pickCone= (PickCone) pickShape;
while (i < stripIndexCounts.length) {
for(int k=0; k<2; k++) {
vtxIndexArr[k] = indexCoord[count];
getVertexData(indexCoord[count++], pnts[k]);
}
scount = stripIndexCounts[i++];
for (j=2; j < scount; j++) {
vtxIndexArr[2] = indexCoord[count];
getVertexData(indexCoord[count++], pnts[2]);
if (intersectCone(pnts, pickCone, sdist, iPnt)) {
if (flags == 0) {
return true;
}
if (sdist[0] < minDist) {
minDist = sdist[0];
x = iPnt.x;
y = iPnt.y;
z = iPnt.z;
if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
if((flags & PickInfo.ALL_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
pnts[1].set(pnts[2]);
vtxIndexArr[1] = vtxIndexArr[2];
}
}
break;
case PickShape.PICKPOINT:
// Should not happen since API already check for this
throw new IllegalArgumentException(J3dI18N.getString("IndexedTriangleFanArrayRetained0"));
default:
throw new RuntimeException ("PickShape not supported for intersection");
}
if (minDist < Double.MAX_VALUE) {
iPnt.x = x;
iPnt.y = y;
iPnt.z = z;
return true;
}
return false;
}
// intersect pnts[] with every triangle in this object
@Override
boolean intersect(Point3d[] pnts) {
int j;
Point3d[] points = new Point3d[3];
double dist[] = new double[1];
int i = 0, scount, count = 0;
points[0] = new Point3d();
points[1] = new Point3d();
points[2] = new Point3d();
switch (pnts.length) {
case 3: // Triangle
while (i < stripIndexCounts.length) {
getVertexData(indexCoord[count++], points[0]);
getVertexData(indexCoord[count++], points[1]);
scount = stripIndexCounts[i++];
for (j=2; j < scount; j++) {
getVertexData(indexCoord[count++], points[2]);
if (intersectTriTri(points[0], points[1], points[2],
pnts[0], pnts[1], pnts[2])) {
return true;
}
points[1].set(points[2]);
}
}
break;
case 4: // Quad
while (i < stripIndexCounts.length) {
getVertexData(indexCoord[count++], points[0]);
getVertexData(indexCoord[count++], points[1]);
scount = stripIndexCounts[i++];
for (j=2; j < scount; j++) {
getVertexData(indexCoord[count++], points[2]);
if (intersectTriTri(points[0], points[1], points[2],
pnts[0], pnts[1], pnts[2]) ||
intersectTriTri(points[0], points[1], points[2],
pnts[0], pnts[2], pnts[3])) {
return true;
}
points[1].set(points[2]);
}
}
break;
case 2: // Line
while (i < stripIndexCounts.length) {
getVertexData(indexCoord[count++], points[0]);
getVertexData(indexCoord[count++], points[1]);
scount = stripIndexCounts[i++];
for (j=2; j < scount; j++) {
getVertexData(indexCoord[count++], points[2]);
if (intersectSegment(points, pnts[0], pnts[1],
dist, null)) {
return true;
}
points[1].set(points[2]);
}
}
break;
case 1: // Point
while (i < stripIndexCounts.length) {
getVertexData(indexCoord[count++], points[0]);
getVertexData(indexCoord[count++], points[1]);
scount = stripIndexCounts[i++];
for (j=2; j < scount; j++) {
getVertexData(indexCoord[count++], points[2]);
if (intersectTriPnt(points[0], points[1], points[2],
pnts[0])) {
return true;
}
points[1].set(points[2]);
}
}
break;
}
return false;
}
@Override
boolean intersect(Transform3D thisToOtherVworld, GeometryRetained geom) {
int i = 0, j, scount, count = 0;
Point3d[] pnts = new Point3d[3];
pnts[0] = new Point3d();
pnts[1] = new Point3d();
pnts[2] = new Point3d();
while (i < stripIndexCounts.length) {
getVertexData(indexCoord[count++], pnts[0]);
getVertexData(indexCoord[count++], pnts[1]);
thisToOtherVworld.transform(pnts[0]);
thisToOtherVworld.transform(pnts[1]);
scount = stripIndexCounts[i++];
for (j=2; j < scount; j++) {
getVertexData(indexCoord[count++], pnts[2]);
thisToOtherVworld.transform(pnts[2]);
if (geom.intersect(pnts)) {
return true;
}
pnts[1].set(pnts[2]);
}
}
return false;
}
// the bounds argument is already transformed
@Override
boolean intersect(Bounds targetBound) {
int i = 0;
int j, scount, count = 0;
Point3d[] pnts = new Point3d[3];
pnts[0] = new Point3d();
pnts[1] = new Point3d();
pnts[2] = new Point3d();
switch(targetBound.getPickType()) {
case PickShape.PICKBOUNDINGBOX:
BoundingBox box = (BoundingBox) targetBound;
while (i < stripIndexCounts.length) {
getVertexData(indexCoord[count++], pnts[0]);
getVertexData(indexCoord[count++], pnts[1]);
scount = stripIndexCounts[i++];
for (j=2; j < scount; j++) {
getVertexData(indexCoord[count++], pnts[2]);
if (intersectBoundingBox(pnts, box, null, null)) {
return true;
}
pnts[1].set(pnts[2]);
}
}
break;
case PickShape.PICKBOUNDINGSPHERE:
BoundingSphere bsphere = (BoundingSphere) targetBound;
while (i < stripIndexCounts.length) {
getVertexData(indexCoord[count++], pnts[0]);
getVertexData(indexCoord[count++], pnts[1]);
scount = stripIndexCounts[i++];
for (j=2; j < scount; j++) {
getVertexData(indexCoord[count++], pnts[2]);
if (intersectBoundingSphere(pnts, bsphere, null, null)) {
return true;
}
pnts[1].set(pnts[2]);
}
}
break;
case PickShape.PICKBOUNDINGPOLYTOPE:
BoundingPolytope bpolytope = (BoundingPolytope) targetBound;
while (i < stripIndexCounts.length) {
getVertexData(indexCoord[count++], pnts[0]);
getVertexData(indexCoord[count++], pnts[1]);
scount = stripIndexCounts[i++];
for (j=2; j < scount; j++) {
getVertexData(indexCoord[count++], pnts[2]);
if (intersectBoundingPolytope(pnts, bpolytope, null, null)) {
return true;
}
pnts[1].set(pnts[2]);
}
}
break;
default:
throw new RuntimeException("Bounds not supported for intersection "
+ targetBound);
}
return false;
}
@Override
int getClassType() {
return TRIANGLE_TYPE;
}
}