Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2013 Harvey Harrison
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*/
package org.scijava.java3d;
import org.scijava.vecmath.Point3d;
import org.scijava.vecmath.Vector3d;
/**
* A small utility class for internal use. Mainly contains some distance-calculation
* methods.
*
*/
class Utils {
/**
* Returns the square of the minimum distance from the given point to the segment
* defined by start, end.
*/
static final double ptToSegSquare(Point3d pt, Point3d start, Point3d end, Point3d closest) {
Vector3d dir = new Vector3d();
dir.sub(end, start);
Vector3d dt = new Vector3d();
dt.sub(pt, start);
// Project the point onto the line defined by the segment
double proj = dir.dot(dt);
// We projected 'before' the start point, just return the dSquared between
// the point and the start
if (proj <= 0.0d) {
if (closest != null) closest.set(start);
return dt.lengthSquared();
}
// Project the segment onto itself
double segSquared = dir.lengthSquared();
// If our point projected off the end of the segment, return the dSquared between
// the point and the end
if (proj >= segSquared) {
if (closest != null) closest.set(end);
dt.sub(pt, end);
return dt.lengthSquared();
}
// We projected somewhere along the segment, calculate the closest point
dt.scaleAdd(proj / segSquared, dir, start);
if (closest != null) closest.set(dt);
// return the distance from the point to the closest point on the segment
dt.sub(pt, dt);
return dt.lengthSquared();
}
/**
* Returns the square of the minimum distance from the given point to the ray
* defined by start, dir.
*/
static final double ptToRaySquare(Point3d pt, Point3d start, Vector3d dir, Point3d closest) {
Vector3d dt = new Vector3d();
dt.sub(pt, start);
// Project the point onto the ray
double proj = dir.dot(dt);
// We projected 'before' the start point, just return the dSquared between
// the point and the start
if (proj <= 0.0d) {
if (closest != null) closest.set(start);
return dt.lengthSquared();
}
// Project the ray onto itself
double raySquared = dir.lengthSquared();
// We projected somewhere along the ray, calculate the closest point
dt.scaleAdd(proj / raySquared, dir, start);
if (closest != null) closest.set(dt);
// return the distance from the point to the closest point on the ray
dt.sub(pt, dt);
return dt.lengthSquared();
}
private static final double ZERO_TOL = 1e-5d;
/**
* Return the square of the minimum distance between a ray and a segment.
* Geometric Tools, LLC
* Copyright (c) 1998-2012
* Distributed under the Boost Software License, Version 1.0.
* http://www.boost.org/LICENSE_1_0.txt
* http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
* http://www.geometrictools.com/LibMathematics/Distance/Wm5DistRay3Segment3.cpp
* File Version: 5.0.1 (2010/10/01)
*/
static public double rayToSegment(Point3d rayorig, Vector3d raydir,
Point3d segstart, Point3d segend,
Point3d rayint, Point3d segint, double[] param) {
double s, t;
Vector3d diff = new Vector3d();
diff.sub(rayorig, segstart);
Vector3d segdir = new Vector3d();
segdir.sub(segend, segstart);
double A = raydir.dot(raydir);// Dot(ray.m,ray.m);
double B = -raydir.dot(segdir);// -Dot(ray.m,seg.m);
double C = segdir.dot(segdir);// Dot(seg.m,seg.m);
double D = raydir.dot(diff);// Dot(ray.m,diff);
double E; // -Dot(seg.m,diff), defer until needed
double F = diff.dot(diff);// Dot(diff,diff);
double det = Math.abs(A * C - B * B); // A*C-B*B = |Cross(M0,M1)|^2 >= 0
double tmp;
if (det >= ZERO_TOL) {
// ray and segment are not parallel
E = -segdir.dot(diff);// -Dot(seg.m,diff);
s = B * E - C * D;
t = B * D - A * E;
if (s >= 0) {
if (t >= 0) {
if (t <= det) { // region 0
// minimum at interior points of ray and segment
double invDet = 1.0f / det;
s *= invDet;
t *= invDet;
if (rayint != null) rayint.scaleAdd(s, raydir, rayorig);
if (segint != null) segint.scaleAdd(t, segdir, segstart);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(s * (A * s + B * t + 2 * D) + t
* (B * s + C * t + 2 * E) + F);
}
else { // region 1
t = 1;
if (D >= 0) {
s = 0;
if (rayint != null) rayint.set(rayorig);
if (segint != null) segint.set(segend);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(C + 2 * E + F);
}
else {
s = -D / A;
if (rayint != null) rayint.scaleAdd(s, raydir, rayorig);
if (segint != null) segint.set(segend);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs((D + 2 * B) * s + C + 2 * E + F);
}
}
}
else { // region 5
t = 0;
if (D >= 0) {
s = 0;
if (rayint != null) rayint.set(rayorig);
if (segint != null) segint.set(segstart);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(F);
}
else {
s = -D / A;
if (rayint != null) rayint.scaleAdd(s, raydir, rayorig);
if (segint != null) segint.set(segstart);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(D * s + F);
}
}
}
else {
if (t <= 0) { // region 4
if (D < 0) {
s = -D / A;
t = 0;
if (rayint != null) rayint.scaleAdd(s, raydir, rayorig);
if (segint != null) segint.set(segstart);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(D * s + F);
}
else {
s = 0;
if (E >= 0) {
t = 0;
if (rayint != null) rayint.set(rayorig);
if (segint != null) segint.set(segstart);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(F);
}
else if (-E >= C) {
t = 1;
if (rayint != null) rayint.set(rayorig);
if (segint != null) segint.set(segend);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(C + 2 * E + F);
}
else {
t = -E / C;
if (rayint != null) rayint.set(rayorig);
if (segint != null) segint.scaleAdd(t, segdir, segstart);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(E * t + F);
}
}
}
else if (t <= det) { // region 3
s = 0;
if (E >= 0) {
t = 0;
if (rayint != null) rayint.set(rayorig);
if (segint != null) segint.set(segstart);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(F);
}
else if (-E >= C) {
t = 1;
if (rayint != null) rayint.set(rayorig);
if (segint != null) segint.set(segend);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(C + 2 * E + F);
}
else {
t = -E / C;
if (rayint != null) rayint.set(rayorig);
if (segint != null) segint.scaleAdd(t, segdir, segstart);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(E * t + F);
}
}
else { // region 2
tmp = B + D;
if (tmp < 0) {
s = -tmp / A;
t = 1;
if (rayint != null) rayint.scaleAdd(s, raydir, rayorig);
if (segint != null) segint.set(segend);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(tmp * s + C + 2 * E + F);
}
else {
s = 0;
if (E >= 0) {
t = 0;
if (rayint != null) rayint.set(rayorig);
if (segint != null) segint.set(segstart);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(F);
}
else if (-E >= C) {
t = 1;
if (rayint != null) rayint.set(rayorig);
if (segint != null) segint.set(segend);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(C + 2 * E + F);
}
else {
t = -E / C;
if (rayint != null) rayint.set(rayorig);
if (segint != null) segint.scaleAdd(t, segdir, segstart);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(E * t + F);
}
}
}
}
}
else {
// ray and segment are parallel
if (B > 0) {
// opposite direction vectors
t = 0;
if (D >= 0) {
s = 0;
if (rayint != null) rayint.set(rayorig);
if (segint != null) segint.set(segstart);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(F);
}
else {
s = -D / A;
if (rayint != null) rayint.scaleAdd(s, raydir, rayorig);
if (segint != null) segint.set(segstart);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(D * s + F);
}
}
else {
// same direction vectors
E = segdir.dot(diff);// -Dot(seg.m,diff);
t = 1;
tmp = B + D;
if (tmp >= 0) {
s = 0;
if (rayint != null) rayint.set(rayorig);
if (segint != null) segint.set(segend);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(C + 2 * E + F);
}
else {
s = -tmp / A;
if (rayint != null) rayint.scaleAdd(s, raydir, rayorig);
if (segint != null) segint.set(segend);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(tmp * s + C + 2 * E + F);
}
}
}
}
/**
* Return the square of the minimum distance between two line segments.
*
* Code in this method adapted from:
* Geometric Tools, LLC
* Copyright (c) 1998-2012
* Distributed under the Boost Software License, Version 1.0.
* http://www.boost.org/LICENSE_1_0.txt
* http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
* http://www.geometrictools.com/LibMathematics/Distance/Wm5DistSegment3Segment3.cpp
* File Version: 5.0.1 (2010/10/01)
*/
static public double segmentToSegment(Point3d s0start, Point3d s0end,
Point3d s1start, Point3d s1end,
Point3d s0int, Point3d s1int, double[] param) {
double s, t;
Vector3d diff = new Vector3d();
diff.sub(s0start, s1start);
Vector3d seg0dir = new Vector3d();
seg0dir.sub(s0end, s0start);
Vector3d seg1dir = new Vector3d();
seg1dir.sub(s1end, s1start);
double A = seg0dir.dot(seg0dir); // Dot(seg0dir,seg0dir);
double B = -seg0dir.dot(seg1dir); // -Dot(seg0dir,seg1dir);
double C = seg1dir.dot(seg1dir); // Dot(seg1dir,seg1dir);
double D = seg0dir.dot(diff); // Dot(seg0dir,diff);
double E; // -Dot(seg1dir,diff), defer until needed
double F = diff.dot(diff); // Dot(diff,diff);
double det = Math.abs(A * C - B * B); // A*C-B*B = |Cross(M0,M1)|^2 >= 0
double tmp;
if (det >= ZERO_TOL) {
// line segments are not parallel
E = -seg1dir.dot(diff); // -Dot(seg1dir,diff);
s = B * E - C * D;
t = B * D - A * E;
if (s >= 0) {
if (s <= det) {
if (t >= 0) {
if (t <= det) { // region 0 (interior)
// minimum at two interior points of 3D lines
double invDet = 1.0f / det;
s *= invDet;
t *= invDet;
if (s0int != null) s0int.scaleAdd(s, seg0dir, s0start);
if (s1int != null) s1int.scaleAdd(t, seg1dir, s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(s * (A * s + B * t + 2 * D) + t
* (B * s + C * t + 2 * E) + F);
}
else { // region 3 (side)
t = 1;
tmp = B + D;
if (tmp >= 0) {
s = 0;
if (s0int != null) s0int.set(s0start);
if (s1int != null) s1int.set(s1end);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(C + 2 * E + F);
}
else if (-tmp >= A) {
s = 1;
if (s0int != null) s0int.set(s0end);
if (s1int != null) s1int.set(s1end);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(A + C + F + 2 * (E + tmp));
}
else {
s = -tmp / A;
if (s0int != null) s0int.scaleAdd(s, seg0dir, s0start);
if (s1int != null) s1int.set(s1end);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(tmp * s + C + 2 * E + F);
}
}
}
else { // region 7 (side)
t = 0;
if (D >= 0) {
s = 0;
if (s0int != null) s0int.set(s0start);
if (s1int != null) s1int.set(s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(F);
}
else if (-D >= A) {
s = 1;
if (s0int != null) s0int.set(s0end);
if (s1int != null) s1int.set(s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(A + 2 * D + F);
}
else {
s = -D / A;
if (s0int != null) s0int.scaleAdd(s, seg0dir, s0start);
if (s1int != null) s1int.set(s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(D * s + F);
}
}
}
else {
if (t >= 0) {
if (t <= det) { // region 1 (side)
s = 1;
tmp = B + E;
if (tmp >= 0) {
t = 0;
if (s0int != null) s0int.set(s0end);
if (s1int != null) s1int.set(s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(A + 2 * D + F);
}
else if (-tmp >= C) {
t = 1;
if (s0int != null) s0int.set(s0end);
if (s1int != null) s1int.set(s1end);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(A + C + F + 2 * (D + tmp));
}
else {
t = -tmp / C;
if (s0int != null) s0int.set(s0end);
if (s1int != null) s1int.scaleAdd(t, seg1dir, s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(tmp * t + A + 2 * D + F);
}
}
else { // region 2 (corner)
tmp = B + D;
if (-tmp <= A) {
t = 1;
if (tmp >= 0) {
s = 0;
if (s0int != null) s0int.set(s0start);
if (s1int != null) s1int.set(s1end);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(C + 2 * E + F);
}
else {
s = -tmp / A;
if (s0int != null) s0int.scaleAdd(s, seg0dir, s0start);
if (s1int != null) s1int.set(s1end);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(tmp * s + C + 2 * E + F);
}
}
else {
s = 1;
tmp = B + E;
if (tmp >= 0) {
t = 0;
if (s0int != null) s0int.set(s0end);
if (s1int != null) s1int.set(s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(A + 2 * D + F);
}
else if (-tmp >= C) {
t = 1;
if (s0int != null) s0int.set(s0end);
if (s1int != null) s1int.set(s1end);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(A + C + F + 2 * (D + tmp));
}
else {
t = -tmp / C;
if (s0int != null) s0int.set(s0end);
if (s1int != null) s1int.scaleAdd(t, seg1dir, s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(tmp * t + A + 2 * D + F);
}
}
}
}
else { // region 8 (corner)
if (-D < A) {
t = 0;
if (D >= 0) {
s = 0;
if (s0int != null) s0int.set(s0start);
if (s1int != null) s1int.set(s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(F);
}
else {
s = -D / A;
if (s0int != null) s0int.scaleAdd(s, seg0dir, s0start);
if (s1int != null) s1int.set(s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(D * s + F);
}
}
else {
s = 1;
tmp = B + E;
if (tmp >= 0) {
t = 0;
if (s0int != null) s0int.set(s0end);
if (s1int != null) s1int.set(s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(A + 2 * D + F);
}
else if (-tmp >= C) {
t = 1;
if (s0int != null) s0int.set(s0end);
if (s1int != null) s1int.set(s1end);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(A + C + F + 2 * (D + tmp));
}
else {
t = -tmp / C;
if (s0int != null) s0int.set(s0end);
if (s1int != null) s1int.scaleAdd(t, seg1dir, s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(tmp * t + A + 2 * D + F);
}
}
}
}
}
else {
if (t >= 0) {
if (t <= det) { // region 5 (side)
s = 0;
if (E >= 0) {
t = 0;
if (s0int != null) s0int.set(s0start);
if (s1int != null) s1int.set(s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(F);
}
else if (-E >= C) {
t = 1;
if (s0int != null) s0int.set(s0start);
if (s1int != null) s1int.set(s1end);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(C + 2 * E + F);
}
else {
t = -E / C;
if (s0int != null) s0int.set(s0start);
if (s1int != null) s1int.scaleAdd(t, seg1dir, s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(E * t + F);
}
}
else { // region 4 (corner)
tmp = B + D;
if (tmp < 0) {
t = 1;
if (-tmp >= A) {
s = 1;
if (s0int != null) s0int.set(s0end);
if (s1int != null) s1int.set(s1end);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(A + C + F + 2 * (E + tmp));
}
else {
s = -tmp / A;
if (s0int != null) s0int.scaleAdd(s, seg0dir, s0start);
if (s1int != null) s1int.set(s1end);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(tmp * s + C + 2 * E + F);
}
}
else {
s = 0;
if (E >= 0) {
t = 0;
if (s0int != null) s0int.set(s0start);
if (s1int != null) s1int.set(s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(F);
}
else if (-E >= C) {
t = 1;
if (s0int != null) s0int.set(s0start);
if (s1int != null) s1int.set(s1end);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(C + 2 * E + F);
}
else {
t = -E / C;
if (s0int != null) s0int.set(s0start);
if (s1int != null) s1int.scaleAdd(t, seg1dir, s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(E * t + F);
}
}
}
}
else { // region 6 (corner)
if (D < 0) {
t = 0;
if (-D >= A) {
s = 1;
if (s0int != null) s0int.set(s0end);
if (s1int != null) s1int.set(s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(A + 2 * D + F);
}
else {
s = -D / A;
if (s0int != null) s0int.scaleAdd(s, seg0dir, s0start);
if (s1int != null) s1int.set(s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(D * s + F);
}
}
else {
s = 0;
if (E >= 0) {
t = 0;
if (s0int != null) s0int.set(s0start);
if (s1int != null) s1int.set(s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(F);
}
else if (-E >= C) {
t = 1;
if (s0int != null) s0int.set(s0start);
if (s1int != null) s1int.set(s1end);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(C + 2 * E + F);
}
else {
t = -E / C;
if (s0int != null) s0int.set(s0start);
if (s1int != null) s1int.scaleAdd(t, seg1dir, s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(E * t + F);
}
}
}
}
}
else {
// line segments are parallel
if (B > 0) {
// direction vectors form an obtuse angle
if (D >= 0) {
s = 0;
t = 0;
if (s0int != null) s0int.set(s0start);
if (s1int != null) s1int.set(s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(F);
}
else if (-D <= A) {
s = -D / A;
t = 0;
if (s0int != null) s0int.scaleAdd(s, seg0dir, s0start);
if (s1int != null) s1int.set(s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(D * s + F);
}
else {
E = -seg1dir.dot(diff); // -Dot(seg1dir,diff);
s = 1;
tmp = A + D;
if (-tmp >= B) {
t = 1;
if (s0int != null) s0int.set(s0end);
if (s1int != null) s1int.set(s1end);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(A + C + F + 2 * (B + D + E));
}
else {
t = -tmp / B;
if (s0int != null) s0int.set(s0end);
if (s1int != null) s1int.scaleAdd(t, seg1dir, s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(A + 2 * D + F + t * (C * t + 2 * (B + E)));
}
}
}
else {
// direction vectors form an acute angle
if (-D >= A) {
s = 1;
t = 0;
if (s0int != null) s0int.set(s0end);
if (s1int != null) s1int.set(s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(A + 2 * D + F);
}
else if (D <= 0) {
s = -D / A;
t = 0;
if (s0int != null) s0int.scaleAdd(s, seg0dir, s0start);
if (s1int != null) s1int.set(s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(D * s + F);
}
else {
E = -seg1dir.dot(diff); // -Dot(seg1dir,diff);
s = 0;
if (D >= -B) {
t = 1;
if (s0int != null) s0int.set(s0start);
if (s1int != null) s1int.set(s1end);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(C + 2 * E + F);
}
else {
t = -D / B;
if (s0int != null) s0int.set(s0start);
if (s1int != null) s1int.scaleAdd(t, seg1dir, s1start);
if (param != null) { param[0] = s; param[1] = t; }
return Math.abs(F + t * (2 * E + C * t));
}
}
}
}
}
}