org.scijava.java3d.utils.geometry.Project Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of j3dutils Show documentation
Show all versions of j3dutils Show documentation
Utility functions for the Java 3D Graphics API
The newest version!
/*
* Copyright (c) 2007 Sun Microsystems, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistribution of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistribution in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* Neither the name of Sun Microsystems, Inc. or the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* This software is provided "AS IS," without a warranty of any
* kind. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
* WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY
* EXCLUDED. SUN MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL
* NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF
* USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS
* DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR
* ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
* CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
* REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR
* INABILITY TO USE THIS SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* You acknowledge that this software is not designed, licensed or
* intended for use in the design, construction, operation or
* maintenance of any nuclear facility.
*
*/
// ----------------------------------------------------------------------
//
// The reference to Fast Industrial Strength Triangulation (FIST) code
// in this release by Sun Microsystems is related to Sun's rewrite of
// an early version of FIST. FIST was originally created by Martin
// Held and Joseph Mitchell at Stony Brook University and is
// incorporated by Sun under an agreement with The Research Foundation
// of SUNY (RFSUNY). The current version of FIST is available for
// commercial use under a license agreement with RFSUNY on behalf of
// the authors and Stony Brook University. Please contact the Office
// of Technology Licensing at Stony Brook, phone 631-632-9009, for
// licensing information.
//
// ----------------------------------------------------------------------
package org.scijava.java3d.utils.geometry;
import org.scijava.vecmath.Matrix4f;
import org.scijava.vecmath.Point3f;
import org.scijava.vecmath.Tuple3f;
import org.scijava.vecmath.Vector3f;
class Project {
/**
* This function projects the vertices of the polygons referenced by
* loops[i1,..,i2-1] to an approximating plane.
*/
static void projectFace(Triangulator triRef, int loopMin, int loopMax) {
Vector3f normal, nr;
int i, j;
double d;
normal = new Vector3f();
nr = new Vector3f();
// determine the normal of the plane onto which the points get projected
determineNormal(triRef, triRef.loops[loopMin], normal);
j = loopMin + 1;
if (j < loopMax) {
for (i = j; i < loopMax; ++i) {
determineNormal(triRef, triRef.loops[i], nr);
if (Basic.dotProduct(normal, nr) < 0.0) {
Basic.invertVector(nr);
}
Basic.vectorAdd(normal, nr, normal);
}
d = Basic.lengthL2(normal);
if (Numerics.gt(d, Triangulator.ZERO)) {
Basic.divScalar(d, normal);
}
else {
// System.out.println("*** ProjectFace: zero-length normal vector!? ***\n");
normal.x = normal.y = 0.0f;
normal.z = 1.0f;
}
}
// project the points onto this plane. the projected points are stored in
// the array `points[0,..,numPoints]'
// System.out.println("loopMin " + loopMin + " loopMax " + loopMax);
projectPoints(triRef, loopMin, loopMax, normal);
}
/**
* This function computes the average of all normals defined by triples of
* successive vertices of the polygon. we'll see whether this is a good
* heuristic for finding a suitable plane normal...
*/
static void determineNormal(Triangulator triRef, int ind, Vector3f normal) {
Vector3f nr, pq, pr;
int ind0, ind1, ind2;
int i0, i1, i2;
double d;
ind1 = ind;
i1 = triRef.fetchData(ind1);
ind0 = triRef.fetchPrevData(ind1);
i0 = triRef.fetchData(ind0);
ind2 = triRef.fetchNextData(ind1);
i2 = triRef.fetchData(ind2);
pq = new Vector3f();
Basic.vectorSub((Tuple3f) triRef.vertices[i0], (Tuple3f) triRef.vertices[i1], (Vector3f) pq);
pr = new Vector3f();
Basic.vectorSub((Tuple3f) triRef.vertices[i2], (Tuple3f) triRef.vertices[i1], (Vector3f) pr);
nr = new Vector3f();
Basic.vectorProduct(pq, pr, nr);
d = Basic.lengthL2(nr);
if (Numerics.gt(d, Triangulator.ZERO)) {
Basic.divScalar(d, nr);
normal.set(nr);
}
else {
normal.x = normal.y = normal.z = 0.0f;
}
pq.set(pr);
ind1 = ind2;
ind2 = triRef.fetchNextData(ind1);
i2 = triRef.fetchData(ind2);
while (ind1 != ind) {
Basic.vectorSub((Tuple3f) triRef.vertices[i2], (Tuple3f) triRef.vertices[i1], pr);
Basic.vectorProduct(pq, pr, nr);
d = Basic.lengthL2(nr);
if (Numerics.gt(d, Triangulator.ZERO)) {
Basic.divScalar(d, nr);
if (Basic.dotProduct(normal, nr) < 0.0) {
Basic.invertVector(nr);
}
Basic.vectorAdd(normal, nr, normal);
}
pq.set(pr);
ind1 = ind2;
ind2 = triRef.fetchNextData(ind1);
i2 = triRef.fetchData(ind2);
}
d = Basic.lengthL2(normal);
if (Numerics.gt(d, Triangulator.ZERO)) {
Basic.divScalar(d, normal);
}
else {
//System.out.println("*** DetermineNormal: zero-length normal vector!? ***\n");
normal.x = normal.y = 0.0f; normal.z = 1.0f;
}
}
/**
* This function maps the vertices of the polygon referenced by `ind' to the
* plane n3.x * x + n3.y * y + n3.z * z = 0. every mapped vertex (x,y,z)
* is then expressed in terms of (x',y',z'), where z'=0. this is
* achieved by transforming the original vertices into a coordinate system
* whose z-axis coincides with n3, and whose two other coordinate axes n1
* and n2 are orthonormal on n3. note that n3 is supposed to be of unit
* length!
*/
static void projectPoints(Triangulator triRef, int i1, int i2, Vector3f n3) {
Matrix4f matrix = new Matrix4f();
Point3f vtx = new Point3f();
Vector3f n1, n2;
double d;
int ind, ind1;
int i, j1;
n1 = new Vector3f();
n2 = new Vector3f();
// choose n1 and n2 appropriately
if ((Math.abs(n3.x) > 0.1) || (Math.abs(n3.y) > 0.1)) {
n1.x = -n3.y;
n1.y = n3.x;
n1.z = 0.0f;
}
else {
n1.x = n3.z;
n1.z = -n3.x;
n1.y = 0.0f;
}
d = Basic.lengthL2(n1);
Basic.divScalar(d, n1);
Basic.vectorProduct(n1, n3, n2);
d = Basic.lengthL2(n2);
Basic.divScalar(d, n2);
// initialize the transformation matrix
matrix.m00 = n1.x;
matrix.m01 = n1.y;
matrix.m02 = n1.z;
matrix.m03 = 0.0f; // translation of the coordinate system
matrix.m10 = n2.x;
matrix.m11 = n2.y;
matrix.m12 = n2.z;
matrix.m13 = 0.0f; // translation of the coordinate system
matrix.m20 = n3.x;
matrix.m21 = n3.y;
matrix.m22 = n3.z;
matrix.m23 = 0.0f; // translation of the coordinate system
matrix.m30 = 0.0f;
matrix.m31 = 0.0f;
matrix.m32 = 0.0f;
matrix.m33 = 1.0f;
// transform the vertices and store the transformed vertices in the array
// `points'
triRef.initPnts(20);
for (i = i1; i < i2; ++i) {
ind = triRef.loops[i];
ind1 = ind;
j1 = triRef.fetchData(ind1);
matrix.transform((Point3f)triRef.vertices[j1], vtx);
j1 = triRef.storePoint(vtx.x, vtx.y);
triRef.updateIndex(ind1, j1);
ind1 = triRef.fetchNextData(ind1);
j1 = triRef.fetchData(ind1);
while (ind1 != ind) {
matrix.transform(triRef.vertices[j1], vtx);
j1 = triRef.storePoint(vtx.x, vtx.y);
triRef.updateIndex(ind1, j1);
ind1 = triRef.fetchNextData(ind1);
j1 = triRef.fetchData(ind1);
}
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy