All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.scijava.ops.engine.matcher.impl.RuntimeSafeMatchingRoutine Maven / Gradle / Ivy

The newest version!
/*-
 * #%L
 * Java implementation of the SciJava Ops matching engine.
 * %%
 * Copyright (C) 2016 - 2024 SciJava developers.
 * %%
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 * #L%
 */

package org.scijava.ops.engine.matcher.impl;

import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.lang.reflect.TypeVariable;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.function.Predicate;

import org.scijava.ops.api.OpEnvironment;
import org.scijava.ops.api.OpInfo;
import org.scijava.ops.api.OpMatchingException;
import org.scijava.ops.api.OpRequest;
import org.scijava.ops.engine.MatchingConditions;
import org.scijava.ops.engine.matcher.OpCandidate;
import org.scijava.ops.engine.matcher.OpCandidate.StatusCode;
import org.scijava.ops.engine.matcher.MatchingResult;
import org.scijava.ops.engine.matcher.MatchingRoutine;
import org.scijava.ops.engine.matcher.OpMatcher;
import org.scijava.ops.engine.matcher.impl.MatchingUtils.TypeVarInfo;
import org.scijava.priority.Priority;
import org.scijava.struct.Member;
import org.scijava.common3.Types;
import org.scijava.types.infer.GenericAssignability;

public class RuntimeSafeMatchingRoutine implements MatchingRoutine {

	@Override
	public void checkSuitability(MatchingConditions conditions)
		throws OpMatchingException
	{
		// NB: Runtime-safe matching should always be allowed
	}

	@Override
	public OpCandidate findMatch(MatchingConditions conditions, OpMatcher matcher,
		OpEnvironment env)
	{
		final ArrayList candidates = new ArrayList<>();

		for (final OpInfo info : getInfos(env, conditions)) {
			Map, Type> typeVarAssigns = new HashMap<>();
			if (typesMatch(info.opType(), conditions.request().type(),
				typeVarAssigns))
			{
				OpCandidate candidate = new OpCandidate(env, conditions.request(), info,
					typeVarAssigns);
				candidates.add(candidate);
			}
		}
		List reqs = Collections.singletonList(conditions.request());
		if (candidates.isEmpty()) {
			return MatchingResult.empty(reqs).singleMatch();
		}
		// narrow down candidates to the exact matches
		final List matches = filterMatches(candidates);
		return new MatchingResult(candidates, matches, reqs).singleMatch();

	}

	/**
	 * Performs several checks, whether the specified candidate:
*
* * {@link #outputsMatch(OpCandidate, HashMap)}
* * has a matching number of args
* * {@link #missArgs(OpCandidate, Type[])}
*
* then returns the candidates which fulfill these criteria. * * @param candidates the candidates to check * @return candidates passing checks */ private List checkCandidates( final List candidates) { final ArrayList validCandidates = new ArrayList<>(); for (final OpCandidate candidate : candidates) { final Type[] args = candidate.paddedArgs(); if (args == null) continue; if (missArgs(candidate, args)) continue; validCandidates.add(candidate); } return validCandidates; } protected List filterMatches( final List candidates) { final List validCandidates = checkCandidates(candidates); // List of valid candidates needs to be sorted according to priority. // This is used as an optimization in order to not look at ops with // lower priority than the already found one. validCandidates.sort((c1, c2) -> Double.compare(c2.priority(), c1 .priority())); List matches; matches = filterMatches(validCandidates, this::typesPerfectMatch); if (!matches.isEmpty()) return matches; matches = filterMatches(validCandidates, this::typesMatch); return matches; } /** * Filters specified list of candidates using specified predicate. This method * stops filtering when the priority decreases. Expects list of candidates to * be sorted in non-ascending order. * * @param candidates the candidates to filter * @param filter the condition * @return candidates passing test of condition and having highest priority */ private List filterMatches(final List candidates, final Predicate filter) { final ArrayList matches = new ArrayList<>(); double priority = Double.NaN; for (final OpCandidate candidate : candidates) { final double p = candidate.priority(); if (p != priority && !matches.isEmpty()) { // NB: Lower priority was reached; stop looking for any more // matches. break; } priority = p; if (filter.test(candidate)) { matches.add(candidate); } } return matches; } private Iterable getInfos(OpEnvironment env, MatchingConditions conditions) { return env.infos(conditions.request().name(), conditions.hints()); } /** * Checks whether the output types of the candidate are applicable to the * input types of the {@link OpRequest}. Sets candidate status code if there * are too many, too few, or not matching types. * * @param candidate the candidate to check inputs for * @param typeBounds possibly predetermined type bounds for type variables * @return whether the input types match */ private boolean inputsMatch(final OpCandidate candidate, HashMap, TypeVarInfo> typeBounds) { if (checkCandidates(Collections.singletonList(candidate)).isEmpty()) return false; final Type[] reqArgTypes = candidate.paddedArgs(); final Type reqType = candidate.getRequest().type(); final Type infoType = candidate.opInfo().opType(); Type implementedInfoType = Types.superTypeOf(infoType, Types.raw(reqType)); if (!(implementedInfoType instanceof ParameterizedType)) { throw new UnsupportedOperationException( "Op type is not a ParameterizedType; we don't know how to deal with these yet."); } Type[] implTypeParams = ((ParameterizedType) implementedInfoType) .getActualTypeArguments(); Type[] candidateArgTypes = candidate.opInfo().struct().members().stream()// .map(member -> member.isInput() ? member.type() : null) // .toArray(Type[]::new); for (int i = 0; i < implTypeParams.length; i++) { if (candidateArgTypes[i] == null) implTypeParams[i] = null; } candidateArgTypes = Arrays.stream(implTypeParams) // .filter(Objects::nonNull).toArray(Type[]::new); if (reqArgTypes == null) return true; // no constraints on output types if (candidateArgTypes.length < reqArgTypes.length) { candidate.setStatus(StatusCode.TOO_FEW_ARGS); return false; } else if (candidateArgTypes.length > reqArgTypes.length) { candidate.setStatus(StatusCode.TOO_MANY_ARGS); return false; } int conflictingIndex = MatchingUtils.isApplicable(reqArgTypes, candidateArgTypes, typeBounds); if (conflictingIndex != -1) { final Type to = reqArgTypes[conflictingIndex]; final Type from = candidateArgTypes[conflictingIndex]; candidate.setStatus(StatusCode.ARG_TYPES_DO_NOT_MATCH, // "request=" + to.getTypeName() + ", actual=" + from.getTypeName()); return false; } return true; } /** * Determines if the candidate has some arguments missing. *

* Helper method of {@link #filterMatches(List)}. *

*/ private boolean missArgs(final OpCandidate candidate, final Type[] paddedArgs) { int i = 0; for (final Member member : candidate.opInfo().inputs()) { if (paddedArgs[i++] == null && member.isRequired()) { candidate.setStatus(StatusCode.REQUIRED_ARG_IS_NULL, null, member); return true; } } return false; } /** * Checks whether the output type of the candidate matches the output type of * the {@link OpRequest}. Sets candidate status code if they are not matching. * * @param candidate the candidate to check output for * @param typeBounds possibly predetermined type bounds for type variables * @return whether the output types match */ private boolean outputsMatch(final OpCandidate candidate, HashMap, TypeVarInfo> typeBounds) { final Type reqOutType = candidate.getRequest().outType(); if (reqOutType == null) return true; // no constraints on output types if (candidate.opInfo().output().isInput()) return true; final Type candidateOutType = candidate.opInfo().outputType(); final int conflictingIndex = MatchingUtils.checkGenericOutputsAssignability( new Type[] { candidateOutType }, new Type[] { reqOutType }, typeBounds); if (conflictingIndex != -1) { candidate.setStatus(StatusCode.OUTPUT_TYPES_DO_NOT_MATCH, // "request=" + reqOutType.getTypeName() + ", actual=" + candidateOutType .getTypeName()); return false; } return true; } /** * Checks whether the arg types of the candidate satisfy the padded arg types * of the candidate. Sets candidate status code if there are too many, too * few, not matching arg types or if a match was found. * * @param candidate the candidate to check args for * @return whether the arg types are satisfied */ private boolean typesMatch(final OpCandidate candidate) { HashMap, TypeVarInfo> typeBounds = new HashMap<>(); if (!inputsMatch(candidate, typeBounds)) { return false; } if (!outputsMatch(candidate, typeBounds)) { return false; } candidate.setStatus(StatusCode.MATCH); return true; } /** Determines whether the specified type satisfies the op's required types. */ protected boolean typesMatch(final Type opType, final Type reqType, final Map, Type> typeVarAssigns) { if (reqType == null) return true; try { if (reqType instanceof ParameterizedType) { if (!GenericAssignability.checkGenericAssignability(opType, (ParameterizedType) reqType, typeVarAssigns, true)) { return false; } } else { if (!Types.isAssignable(opType, reqType)) { return false; } } } catch (IllegalStateException e) { return false; } return true; } /** * Determine if the arguments and the output types of the candidate perfectly * match with the request. */ private boolean typesPerfectMatch(final OpCandidate candidate) { int i = 0; Type[] paddedArgs = candidate.paddedArgs(); for (final Type t : candidate.opInfo().inputTypes()) { if (paddedArgs[i] != null) { if (!t.equals(paddedArgs[i])) return false; } i++; } final Type outputType = candidate.getRequest().outType(); if (!Objects.equals(outputType, candidate.opInfo().outputType())) return false; candidate.setStatus(StatusCode.MATCH); return true; } @Override public double priority() { return Priority.HIGH; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy