
org.scijava.ops.image.coloc.icq.LiICQ Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scijava-ops-image Show documentation
Show all versions of scijava-ops-image Show documentation
Image processing operations for SciJava Ops.
The newest version!
/*-
* #%L
* Image processing operations for SciJava Ops.
* %%
* Copyright (C) 2014 - 2024 SciJava developers.
* %%
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* #L%
*/
package org.scijava.ops.image.coloc.icq;
import org.scijava.ops.image.coloc.ColocUtil;
import net.imglib2.type.numeric.RealType;
import net.imglib2.type.numeric.real.DoubleType;
import net.imglib2.util.IterablePair;
import net.imglib2.util.Pair;
import org.scijava.function.Computers;
import org.scijava.function.Functions;
import org.scijava.ops.spi.Nullable;
import org.scijava.ops.spi.OpDependency;
/**
* This algorithm calculates Li et al.'s ICQ (intensity correlation quotient).
*
* @param Type of the first image
* @param Type of the second image
* @implNote op names='coloc.icq'
*/
public class LiICQ, U extends RealType, V extends RealType>
implements
Functions.Arity4, Iterable, DoubleType, DoubleType, Double>
{
@OpDependency(name = "stats.mean")
private Computers.Arity1, DoubleType> meanTOp;
@OpDependency(name = "stats.mean")
private Computers.Arity1, DoubleType> meanUOp;
/**
* TODO
*
* @param image1
* @param image2
* @param mean1
* @param mean2
* @return the output
*/
@Override
public Double apply(final Iterable image1, final Iterable image2,
@Nullable DoubleType mean1, @Nullable DoubleType mean2)
{
if (!ColocUtil.sameIterationOrder(image1, image2))
throw new IllegalArgumentException(
"Input and output must have the same dimensionality and iteration order!");
final Iterable> samples = new IterablePair<>(image1, image2);
final double m1 = mean1 == null ? computeMeanTOf(image1) : mean1.get();
final double m2 = mean2 == null ? computeMeanUOf(image2) : mean2.get();
// variables to count the positive and negative results
// of Li's product of the difference of means.
long numPositiveProducts = 0;
long numNegativeProducts = 0;
// iterate over image
for (final Pair value : samples) {
final double ch1 = value.getA().getRealDouble();
final double ch2 = value.getB().getRealDouble();
final double productOfDifferenceOfMeans = (m1 - ch1) * (m2 - ch2);
// check for positive and negative values
if (productOfDifferenceOfMeans < 0.0) ++numNegativeProducts;
else++numPositiveProducts;
}
/*
* calculate Li's ICQ value by dividing the amount of "positive pixels" to the
* total number of pixels. Then shift it in the -0.5,0.5 range.
*/
final double icqValue = (double) numPositiveProducts /
(double) (numNegativeProducts + numPositiveProducts) - 0.5;
return icqValue;
}
private double computeMeanTOf(final Iterable in) {
DoubleType mean = new DoubleType();
meanTOp.compute(in, mean);
return mean.get();
}
private double computeMeanUOf(final Iterable in) {
DoubleType mean = new DoubleType();
meanUOp.compute(in, mean);
return mean.get();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy