
org.scijava.ops.image.coloc.pValue.DefaultPValue Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scijava-ops-image Show documentation
Show all versions of scijava-ops-image Show documentation
Image processing operations for SciJava Ops.
The newest version!
/*-
* #%L
* Image processing operations for SciJava Ops.
* %%
* Copyright (C) 2014 - 2024 SciJava developers.
* %%
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* #L%
*/
package org.scijava.ops.image.coloc.pValue;
import java.util.List;
import java.util.Random;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
import org.scijava.concurrent.Parallelization;
import org.scijava.function.Computers;
import org.scijava.ops.spi.Nullable;
import org.scijava.ops.spi.OpDependency;
import org.scijava.ops.image.coloc.ShuffledView;
import net.imglib2.Cursor;
import net.imglib2.Dimensions;
import net.imglib2.RandomAccess;
import net.imglib2.RandomAccessibleInterval;
import net.imglib2.img.Img;
import net.imglib2.type.numeric.RealType;
import net.imglib2.util.Intervals;
import net.imglib2.util.Util;
import net.imglib2.view.Views;
/**
* This algorithm repeatedly executes a colocalization algorithm, computing a
* p-value. It is based on a new statistical framework published by Wang et al
* (2017) IEEE Signal Processing "Automated and Robust Quantification of
* Colocalization in Dual-Color Fluorescence Microscopy: A Nonparametric
* Statistical Approach".
*
* @implNote op names='coloc.pValue'
*/
public class DefaultPValue, U extends RealType>
implements
Computers.Arity6, RandomAccessibleInterval, BiFunction, RandomAccessibleInterval, Double>, Integer, Dimensions, Long, PValueResult>
{
/**
* TODO
*
* @param image1 the first image
* @param image2 the second image
* @param op the op
* @param nrRandomizations the number of randomizations
* @param psfSize Size of blocks for random shufflings.
* @param seed the seed
* @param output the output
*/
@Override
public void compute( //
final RandomAccessibleInterval image1, //
final RandomAccessibleInterval image2, //
final BiFunction, RandomAccessibleInterval, Double> op, //
@Nullable Integer nrRandomizations, //
@Nullable Dimensions psfSize, //
@Nullable Long seed, //
final PValueResult output //
) {
// Check nullable arguments
if (nrRandomizations == null) {
nrRandomizations = 100;
}
// NB psfSize null-check is in blockSize method
if (seed == null) {
seed = 0x27372034L;
}
final int[] blockSize = blockSize(image1, psfSize);
final RandomAccessibleInterval trimmedImage1 = trim(image1, blockSize);
final RandomAccessibleInterval trimmedImage2 = trim(image2, blockSize);
final T type1 = Util.getTypeFromInterval(image1);
final double[] sampleDistribution = new double[nrRandomizations];
// compute actual coloc value
final double value = op.apply(trimmedImage1, trimmedImage2);
// compute shuffled coloc values in parallel
var executor = Parallelization.getTaskExecutor();
var numTasks = executor.suggestNumberOfTasks();
Random r = new Random(seed);
long[] seeds = new long[nrRandomizations];
for (int s = 0; s < nrRandomizations; s++) {
seeds[s] = r.nextLong();
}
List params = IntStream.rangeClosed(0, numTasks - 1) //
.boxed().collect(Collectors.toList());
// NB final variable needed for use in lambda
final Integer nr = nrRandomizations;
Consumer task = (t) -> {
int offset = t * nr / numTasks;
int count = (t + 1) * nr / numTasks - offset;
// a new one per thread and each needs its own seed
final ShuffledView shuffled = new ShuffledView<>(trimmedImage1,
blockSize, seeds[offset]);
Img buffer = Util.getSuitableImgFactory(shuffled, type1).create(
shuffled);
for (int i = 0; i < count; i++) {
int index = offset + i;
if (index >= nr) break;
if (i > 0) shuffled.shuffleBlocks(seeds[index]);
copy(shuffled, buffer);
sampleDistribution[index] = op.apply(buffer, trimmedImage2);
}
};
try {
executor.forEach(params, task);
}
catch (final Exception exc) {
final Throwable cause = exc.getCause();
if (cause instanceof RuntimeException) throw (RuntimeException) cause;
throw new RuntimeException(exc);
}
output.setColocValue(value);
output.setColocValuesArray(sampleDistribution);
output.setPValue(calculatePvalue(value, sampleDistribution));
}
private void copy(ShuffledView shuffled, Img buffer) {
Cursor cursor = buffer.localizingCursor();
RandomAccess ra = shuffled.randomAccess();
while (cursor.hasNext()) {
T v = cursor.next();
ra.setPosition(cursor);
v.set(ra.get());
}
}
private double calculatePvalue(final double input,
final double[] distribution)
{
double count = 0;
for (int i = 0; i < distribution.length; i++) {
if (distribution[i] > input) {
count++;
}
}
final double pval = count / distribution.length;
return pval;
}
private static int[] blockSize(final Dimensions image,
final Dimensions psfSize)
{
if (psfSize != null) return Intervals.dimensionsAsIntArray(psfSize);
final int[] blockSize = new int[image.numDimensions()];
for (int d = 0; d < blockSize.length; d++) {
final long size = (long) Math.floor(Math.sqrt(image.dimension(d)));
if (size > Integer.MAX_VALUE) {
throw new IllegalArgumentException("Image dimension #" + d +
" is too large: " + image.dimension(d));
}
blockSize[d] = (int) size;
}
return blockSize;
}
private static RandomAccessibleInterval trim(
final RandomAccessibleInterval image, final int[] blockSize)
{
final long[] min = Intervals.minAsLongArray(image);
final long[] max = Intervals.maxAsLongArray(image);
for (int d = 0; d < blockSize.length; d++) {
final long trimSize = image.dimension(d) % blockSize[d];
final long half = trimSize / 2;
min[d] += half;
max[d] -= trimSize - half;
}
return Views.interval(image, min, max);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy