
org.scijava.ops.image.features.tamura2d.DefaultCoarsenessFeature Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scijava-ops-image Show documentation
Show all versions of scijava-ops-image Show documentation
Image processing operations for SciJava Ops.
The newest version!
/*
* #%L
* Image processing operations for SciJava Ops.
* %%
* Copyright (C) 2014 - 2024 SciJava developers.
* %%
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* #L%
*/
package org.scijava.ops.image.features.tamura2d;
import java.util.ArrayList;
import java.util.HashMap;
import net.imglib2.Cursor;
import net.imglib2.FinalInterval;
import net.imglib2.RandomAccess;
import net.imglib2.RandomAccessibleInterval;
import net.imglib2.algorithm.neighborhood.RectangleShape;
import net.imglib2.algorithm.neighborhood.Shape;
import net.imglib2.img.Img;
import net.imglib2.img.array.ArrayImgs;
import net.imglib2.outofbounds.OutOfBoundsFactory;
import net.imglib2.outofbounds.OutOfBoundsMirrorFactory;
import net.imglib2.outofbounds.OutOfBoundsMirrorFactory.Boundary;
import net.imglib2.type.numeric.RealType;
import net.imglib2.type.numeric.real.DoubleType;
import net.imglib2.util.Intervals;
import org.scijava.function.Computers;
import org.scijava.ops.spi.OpDependency;
/**
* Implementation of Tamura's Coarseness feature
*
* @author Andreas Graumann (University of Konstanz)
* @param
* @param
* @implNote op names='features.tamura.coarseness'
*/
public class DefaultCoarsenessFeature, O extends RealType>
implements Computers.Arity1, O>
{
@OpDependency(name = "filter.mean")
private Computers.Arity3, Shape, //
OutOfBoundsFactory>, RandomAccessibleInterval> meanOp;
/**
* TODO
*
* @param input
* @param output
*/
@Override
@SuppressWarnings("unchecked")
public void compute(final RandomAccessibleInterval input, final O output) {
if (input.numDimensions() != 2) throw new IllegalArgumentException(
"Only 2 dimensional images allowed!");
HashMap> meanImages = new HashMap<>();
// get mean images
for (int i = 1; i <= 5; i++) {
meanImages.put(i, mean(input, i));
}
ArrayList maxDifferences = sizedLeadDiffValues(input, meanImages);
double out = 0.0;
for (Double i : maxDifferences) {
out += i;
}
out /= maxDifferences.size();
output.set((O) new DoubleType(out));
}
/**
* For every point calculate differences between the not overlapping
* neighborhoods on opposite sides of the point in horizontal and vertical
* direction. At each point take the highest difference value when considering
* all directions together.
*
* @param input Input image
* @param meanImages Mean images
* @return Array containing all leading difference values
*/
private ArrayList sizedLeadDiffValues(
final RandomAccessibleInterval input,
final HashMap> meanImages)
{
long[] pos = new long[input.numDimensions()];
long[] dim = new long[input.numDimensions()];
input.dimensions(dim);
ArrayList maxDifferences = new ArrayList<>();
Cursor cursor = meanImages.get(1).cursor();
while (cursor.hasNext()) {
cursor.next();
// NB: the smallest possible value for maxDiff is 0
double maxDiff = 0;
for (int i = 1; i <= 5; i++) {
RandomAccess ra1 = meanImages.get(i).randomAccess();
RandomAccess ra2 = meanImages.get(i).randomAccess();
for (int d = 0; d < input.numDimensions(); d++) {
cursor.localize(pos);
if (pos[d] + 2 * i + 1 < dim[d]) {
ra1.setPosition(pos);
double val1 = ra1.get().getRealDouble();
pos[d] += 2 * i + 1;
ra2.setPosition(pos);
double val2 = ra2.get().getRealDouble();
double diff = Math.abs(val2 - val1);
maxDiff = diff >= maxDiff ? diff : maxDiff;
}
}
}
maxDifferences.add(maxDiff);
}
return maxDifferences;
}
/**
* Apply mean filter with given size of reactangle shape
*
* @param input Input image
* @param i Size of rectangle shape
* @return Filtered mean image
*/
@SuppressWarnings("unchecked")
private Img mean(final RandomAccessibleInterval input, final int i) {
long[] dims = new long[input.numDimensions()];
input.dimensions(dims);
final byte[] array = new byte[(int) Intervals.numElements(new FinalInterval(
dims))];
Img meanImg = (Img) ArrayImgs.unsignedBytes(array, dims);
OutOfBoundsMirrorFactory> oobFactory =
new OutOfBoundsMirrorFactory<>(Boundary.SINGLE);
meanOp.compute(input, new RectangleShape(i, true), oobFactory, meanImg);
return meanImg;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy