
org.scijava.ops.image.features.tamura2d.DefaultDirectionalityFeature Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scijava-ops-image Show documentation
Show all versions of scijava-ops-image Show documentation
Image processing operations for SciJava Ops.
The newest version!
/*
* #%L
* Image processing operations for SciJava Ops.
* %%
* Copyright (C) 2014 - 2024 SciJava developers.
* %%
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* #L%
*/
package org.scijava.ops.image.features.tamura2d;
import java.util.ArrayList;
import java.util.function.BiFunction;
import java.util.function.Function;
import net.imglib2.Cursor;
import net.imglib2.Dimensions;
import net.imglib2.RandomAccessibleInterval;
import net.imglib2.algorithm.gradient.PartialDerivative;
import net.imglib2.histogram.Histogram1d;
import net.imglib2.img.Img;
import net.imglib2.type.numeric.RealType;
import net.imglib2.type.numeric.integer.LongType;
import net.imglib2.type.numeric.real.DoubleType;
import net.imglib2.view.Views;
import org.scijava.function.Computers;
import org.scijava.ops.spi.Nullable;
import org.scijava.ops.spi.OpDependency;
/**
* Implementation of Tamura's Directionality Feature
*
* @author Andreas Graumann (University of Konstanz)
* @param
* @param
* @implNote op names='features.tamura.directionality'
*/
public class DefaultDirectionalityFeature, O extends RealType>
implements Computers.Arity2, Integer, O>
{
@OpDependency(name = "image.histogram")
private BiFunction, Integer, Histogram1d> histOp;
@OpDependency(name = "stats.stdDev")
private Function, DoubleType> stdOp;
@OpDependency(name = "create.img")
private BiFunction> imgCreator;
/**
* TODO
*
* @param input
* @param histogramSize
* @param output
*/
@Override
@SuppressWarnings("unchecked")
public void compute(final RandomAccessibleInterval input,
@Nullable Integer histogramSize, final O output)
{
if (input.numDimensions() != 2) throw new IllegalArgumentException(
"Only 2 dimensional images allowed!");
if (histogramSize == null) histogramSize = 16;
// List to store all directions occurring within the image on borders
ArrayList dirList = new ArrayList<>();
// Dimension of input region
long[] dims = new long[input.numDimensions()];
input.dimensions(dims);
// create image for derivations in x and y direction
I imgType = Views.iterable(input).firstElement();
Img derX = imgCreator.apply(input, imgType);
Img derY = imgCreator.apply(input, imgType);
// calculate derivations in x and y direction
PartialDerivative.gradientCentralDifference2(Views.extendMirrorSingle(
input), derX, 0);
PartialDerivative.gradientCentralDifference2(Views.extendMirrorSingle(
input), derY, 1);
// calculate theta at each position: theta = atan(dX/dY) + pi/2
Cursor cX = derX.cursor();
Cursor cY = derY.cursor();
// for each position calculate magnitude and direction
while (cX.hasNext()) {
cX.next();
cY.next();
double dx = cX.get().getRealDouble();
double dy = cY.get().getRealDouble();
double dir = 0.0;
double mag = 0.0;
mag = Math.sqrt(dx * dx + dy * dy);
if (dx != 0 && mag > 0.0) {
dir = Math.atan(dy / dx) + Math.PI / 2;
dirList.add(new DoubleType(dir));
}
}
// No directions: output is zero
if (dirList.isEmpty()) {
output.setReal(0.0);
}
// Otherwise compute histogram over all occurring directions
// and calculate inverse second moment on it as output
else {
Histogram1d hist = histOp.apply(dirList, histogramSize);
double std = stdOp.apply(hist).getRealDouble();
output.setReal(1 / std);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy