All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.scijava.ops.image.threshold.huang.ComputeHuangThreshold Maven / Gradle / Ivy

The newest version!
/*
 * #%L
 * Image processing operations for SciJava Ops.
 * %%
 * Copyright (C) 2014 - 2024 SciJava developers.
 * %%
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 * #L%
 */

package org.scijava.ops.image.threshold.huang;

import org.scijava.ops.image.threshold.AbstractComputeThresholdHistogram;
import net.imglib2.histogram.Histogram1d;
import net.imglib2.type.numeric.RealType;

//NB - this plugin adapted from Gabriel Landini's code of his AutoThreshold
//plugin found in Fiji (version 1.14).

/**
 * Implements Huang's threshold method by Huang {@literal &} Wang.
 *
 * @author Barry DeZonia
 * @author Gabriel Landini
 * @implNote op names='threshold.huang'
 */
public class ComputeHuangThreshold> extends
	AbstractComputeThresholdHistogram
{

	/**
	 * TODO
	 *
	 * @param hist the {@link Histogram1d}.
	 * @return the Huang threshold value
	 */
	@Override
	public long computeBin(final Histogram1d hist) {
		final long[] histogram = hist.toLongArray();
		return computeBin(histogram);
	}

	/**
	 * Implements Huang's fuzzy thresholding method
* Uses Shannon's entropy function (one can also use Yager's entropy function) * Huang L.-K. and Wang M.-J.J. (1995) "Image Thresholding by Minimizing the * Measures of Fuzziness" Pattern Recognition, 28(1): 41-51
* Reimplemented (to handle 16-bit efficiently) by Johannes Schindelin Jan 31, * 2011 */ public static long computeBin(final long[] histogram) { // find first and last non-empty bin int first, last; for (first = 0; first < histogram.length && histogram[first] == 0; first++) { // do nothing } for (last = histogram.length - 1; last > first && histogram[last] == 0; last--) { // do nothing } if (first == last) return 0; // calculate the cumulative density and the weighted cumulative density final double[] S = new double[last + 1], W = new double[last + 1]; S[0] = histogram[0]; for (int i = Math.max(1, first); i <= last; i++) { S[i] = S[i - 1] + histogram[i]; W[i] = W[i - 1] + i * histogram[i]; } // precalculate the summands of the entropy given the absolute difference // x - mu (integral) final double C = last - first; final double[] Smu = new double[last + 1 - first]; for (int i = 1; i < Smu.length; i++) { final double mu = 1 / (1 + Math.abs(i) / C); Smu[i] = -mu * Math.log(mu) - (1 - mu) * Math.log(1 - mu); } // calculate the threshold int bestThreshold = 0; double bestEntropy = Double.POSITIVE_INFINITY; for (int threshold = first; threshold <= last; threshold++) { double entropy = 0; int mu = (int) Math.round(W[threshold] / S[threshold]); for (int i = first; i <= threshold; i++) entropy += Smu[Math.abs(i - mu)] * histogram[i]; mu = (int) Math.round((W[last] - W[threshold]) / (S[last] - S[threshold])); for (int i = threshold + 1; i <= last; i++) entropy += Smu[Math.abs(i - mu)] * histogram[i]; if (bestEntropy > entropy) { bestEntropy = entropy; bestThreshold = threshold; } } return bestThreshold; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy