
org.scijava.ops.image.threshold.huang.ComputeHuangThreshold Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scijava-ops-image Show documentation
Show all versions of scijava-ops-image Show documentation
Image processing operations for SciJava Ops.
The newest version!
/*
* #%L
* Image processing operations for SciJava Ops.
* %%
* Copyright (C) 2014 - 2024 SciJava developers.
* %%
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* #L%
*/
package org.scijava.ops.image.threshold.huang;
import org.scijava.ops.image.threshold.AbstractComputeThresholdHistogram;
import net.imglib2.histogram.Histogram1d;
import net.imglib2.type.numeric.RealType;
//NB - this plugin adapted from Gabriel Landini's code of his AutoThreshold
//plugin found in Fiji (version 1.14).
/**
* Implements Huang's threshold method by Huang {@literal &} Wang.
*
* @author Barry DeZonia
* @author Gabriel Landini
* @implNote op names='threshold.huang'
*/
public class ComputeHuangThreshold> extends
AbstractComputeThresholdHistogram
{
/**
* TODO
*
* @param hist the {@link Histogram1d}.
* @return the Huang threshold value
*/
@Override
public long computeBin(final Histogram1d hist) {
final long[] histogram = hist.toLongArray();
return computeBin(histogram);
}
/**
* Implements Huang's fuzzy thresholding method
* Uses Shannon's entropy function (one can also use Yager's entropy function)
* Huang L.-K. and Wang M.-J.J. (1995) "Image Thresholding by Minimizing the
* Measures of Fuzziness" Pattern Recognition, 28(1): 41-51
* Reimplemented (to handle 16-bit efficiently) by Johannes Schindelin Jan 31,
* 2011
*/
public static long computeBin(final long[] histogram) {
// find first and last non-empty bin
int first, last;
for (first = 0; first < histogram.length &&
histogram[first] == 0; first++)
{
// do nothing
}
for (last = histogram.length - 1; last > first &&
histogram[last] == 0; last--)
{
// do nothing
}
if (first == last) return 0;
// calculate the cumulative density and the weighted cumulative density
final double[] S = new double[last + 1], W = new double[last + 1];
S[0] = histogram[0];
for (int i = Math.max(1, first); i <= last; i++) {
S[i] = S[i - 1] + histogram[i];
W[i] = W[i - 1] + i * histogram[i];
}
// precalculate the summands of the entropy given the absolute difference
// x - mu (integral)
final double C = last - first;
final double[] Smu = new double[last + 1 - first];
for (int i = 1; i < Smu.length; i++) {
final double mu = 1 / (1 + Math.abs(i) / C);
Smu[i] = -mu * Math.log(mu) - (1 - mu) * Math.log(1 - mu);
}
// calculate the threshold
int bestThreshold = 0;
double bestEntropy = Double.POSITIVE_INFINITY;
for (int threshold = first; threshold <= last; threshold++) {
double entropy = 0;
int mu = (int) Math.round(W[threshold] / S[threshold]);
for (int i = first; i <= threshold; i++)
entropy += Smu[Math.abs(i - mu)] * histogram[i];
mu = (int) Math.round((W[last] - W[threshold]) / (S[last] -
S[threshold]));
for (int i = threshold + 1; i <= last; i++)
entropy += Smu[Math.abs(i - mu)] * histogram[i];
if (bestEntropy > entropy) {
bestEntropy = entropy;
bestThreshold = threshold;
}
}
return bestThreshold;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy