
org.scijava.ops.image.threshold.localMean.LocalMeanThreshold Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scijava-ops-image Show documentation
Show all versions of scijava-ops-image Show documentation
Image processing operations for SciJava Ops.
The newest version!
/*
* #%L
* Image processing operations for SciJava Ops.
* %%
* Copyright (C) 2014 - 2024 SciJava developers.
* %%
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* #L%
*/
package org.scijava.ops.image.threshold.localMean;
import java.util.Arrays;
import java.util.function.Function;
import org.scijava.ops.image.threshold.ApplyLocalThresholdIntegral;
import net.imglib2.RandomAccessibleInterval;
import net.imglib2.algorithm.neighborhood.RectangleNeighborhood;
import net.imglib2.algorithm.neighborhood.RectangleShape;
import net.imglib2.algorithm.neighborhood.Shape;
import net.imglib2.outofbounds.OutOfBoundsFactory;
import net.imglib2.type.logic.BitType;
import net.imglib2.type.numeric.RealType;
import net.imglib2.type.numeric.real.DoubleType;
import net.imglib2.view.composite.Composite;
import org.scijava.function.Computers;
import org.scijava.ops.spi.OpDependency;
import org.scijava.ops.spi.Nullable;
/**
* Implementation of the local mean threshold method for images. Makes use of
* integral images for an improved execution speed of the threshold computation,
* depending on its parameterization.
*
* @author Jonathan Hale (University of Konstanz)
* @author Martin Horn (University of Konstanz)
* @author Stefan Helfrich (University of Konstanz)
* @implNote op names='threshold.localMean', priority='-100.'
*/
public class LocalMeanThreshold> extends
ApplyLocalThresholdIntegral implements
Computers.Arity4, Shape, Double, OutOfBoundsFactory>, //
RandomAccessibleInterval> {
private static final int INTEGRAL_IMAGE_ORDER = 1;
@OpDependency(name = "threshold.localMean")
private Computers.Arity3, T, Double, BitType> computeThresholdNonIntegralOp;
@OpDependency(name = "threshold.localMean")
private Computers.Arity3>, T, Double, BitType> computeThresholdIntegralOp;
@OpDependency(name = "filter.applyCenterAware")
private Computers.Arity4, Computers.Arity2, T, BitType>, Shape, OutOfBoundsFactory>, RandomAccessibleInterval> applyFilterOp;
/**
* TODO
*
* @param input
* @param inputNeighborhoodShape
* @param c
* @param outOfBoundsFactory
* @param output
*/
@Override
public void compute(final RandomAccessibleInterval input,
final Shape inputNeighborhoodShape, final Double c,
@Nullable OutOfBoundsFactory> outOfBoundsFactory,
final RandomAccessibleInterval output)
{
// Use integral images for sufficiently large windows.
RectangleShape rShape = inputNeighborhoodShape instanceof RectangleShape
? (RectangleShape) inputNeighborhoodShape : null;
if (rShape != null && rShape.getSpan() > 2 && !rShape.isSkippingCenter()) {
// NB: under these conditions, the RectangleShape will produce
// RectangleNeighborhoods (which is needed to perform the computations via
// an IntegralImg).
computeIntegral(input, rShape, c, outOfBoundsFactory, getIntegralImageOp(
INTEGRAL_IMAGE_ORDER), computeThresholdIntegralOp, output);
}
else {
computeNonIntegral(input, inputNeighborhoodShape, c, outOfBoundsFactory,
computeThresholdNonIntegralOp, output);
}
}
public void computeNonIntegral(final RandomAccessibleInterval input,
final Shape inputNeighborhoodShape, final Double c,
final OutOfBoundsFactory> outOfBoundsFactory,
final Computers.Arity3, T, Double, BitType> computeThresholdOp,
final RandomAccessibleInterval output)
{
final Computers.Arity2, T, BitType> parameterizedComputeThresholdOp = //
(i1, i2, o) -> computeThresholdOp.compute(i1, i2, c, o);
applyFilterOp.compute(input, parameterizedComputeThresholdOp,
inputNeighborhoodShape, outOfBoundsFactory, output);
}
public void computeIntegral(final RandomAccessibleInterval input,
final RectangleShape inputNeighborhoodShape, final Double c,
final OutOfBoundsFactory> outOfBoundsFactory,
final Function, RandomAccessibleInterval> integralImageOp,
final Computers.Arity3>, T, Double, BitType> computeThresholdOp,
final RandomAccessibleInterval output)
{
final Computers.Arity2>, T, BitType> parameterizedComputeThresholdOp = //
(i1, i2, o) -> computeThresholdOp.compute(i1, i2, c, o);
compute(input, inputNeighborhoodShape, outOfBoundsFactory, Arrays.asList(
integralImageOp), parameterizedComputeThresholdOp, output);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy