All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.scijava.ops.image.threshold.localSauvola.ComputeLocalSauvolaThreshold Maven / Gradle / Ivy

The newest version!
/*
 * #%L
 * Image processing operations for SciJava Ops.
 * %%
 * Copyright (C) 2014 - 2024 SciJava developers.
 * %%
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 * #L%
 */

package org.scijava.ops.image.threshold.localSauvola;

import net.imglib2.type.logic.BitType;
import net.imglib2.type.numeric.RealType;
import net.imglib2.type.numeric.real.DoubleType;

import org.scijava.function.Computers;
import org.scijava.ops.spi.Nullable;
import org.scijava.ops.spi.OpDependency;

/**
 * 

* This is a modification of Niblack's thresholding method. In contrast to the * recommendation on parameters in the publication, this implementation operates * on normalized images (to the [0, 1] range). Hence, the r parameter defaults * to half the possible standard deviation in a normalized image, namely 0.5. *

*

* Sauvola J. and Pietaksinen M. (2000) "Adaptive Document Image Binarization" * Pattern Recognition, 33(2): 225-236. * PDF *

*

* Original ImageJ implementation by Gabriel Landini. *

* * @author Stefan Helfrich (University of Konstanz) * @implNote op names='threshold.localSauvola', priority='-100.' */ public class ComputeLocalSauvolaThreshold> implements Computers.Arity4, T, Double, Double, BitType> { public static final double DEFAULT_K = 0.5; public static final double DEFAULT_R = 0.5; @OpDependency(name = "stats.mean") private Computers.Arity1, DoubleType> meanOp; @OpDependency(name = "stats.stdDev") private Computers.Arity1, DoubleType> stdDeviationOp; /** * TODO * * @param inputNeighborhood * @param inputCenterPixel * @param k * @param r * @param output */ @Override public void compute(final Iterable inputNeighborhood, final T inputCenterPixel, @Nullable final Double k, @Nullable final Double r, final BitType output) { compute(inputNeighborhood, inputCenterPixel, k, r, meanOp, stdDeviationOp, output); } public static > void compute( final Iterable inputNeighborhood, final T inputCenterPixel, Double k, Double r, final Computers.Arity1, DoubleType> meanOp, final Computers.Arity1, DoubleType> stdDeviationOp, final BitType output) { if (k == null) k = DEFAULT_K; if (r == null) r = DEFAULT_R; final DoubleType meanValue = new DoubleType(); meanOp.compute(inputNeighborhood, meanValue); final DoubleType stdDevValue = new DoubleType(); stdDeviationOp.compute(inputNeighborhood, stdDevValue); final double threshold = meanValue.get() * (1.0d + k * ((Math.sqrt( stdDevValue.get()) / r) - 1.0)); output.set(inputCenterPixel.getRealDouble() >= threshold); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy