
org.scijava.ops.image.threshold.otsu.ComputeOtsuThreshold Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scijava-ops-image Show documentation
Show all versions of scijava-ops-image Show documentation
Image processing operations for SciJava Ops.
The newest version!
/*
* #%L
* Image processing operations for SciJava Ops.
* %%
* Copyright (C) 2014 - 2024 SciJava developers.
* %%
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* #L%
*/
package org.scijava.ops.image.threshold.otsu;
import org.scijava.ops.image.threshold.AbstractComputeThresholdHistogram;
import net.imglib2.histogram.Histogram1d;
import net.imglib2.type.numeric.RealType;
// NB - this plugin adapted from Gabriel Landini's code of his AutoThreshold
// plugin found in Fiji (version 1.14).
/**
* Implements Otsu's threshold method.
*
* @author Barry DeZonia
* @author Gabriel Landini
* @implNote op names='threshold.otsu', priority='100.'
*/
public class ComputeOtsuThreshold> extends
AbstractComputeThresholdHistogram
{
/**
* TODO
*
* @param hist the {@link Histogram1d}
* @return the Otsu threshold value
*/
@Override
public long computeBin(final Histogram1d hist) {
final long[] histogram = hist.toLongArray();
return computeBin(histogram);
}
/**
* Otsu's threshold algorithm
* C++ code by Jordan Bevik <[email protected]>
* ported to ImageJ plugin by G.Landini
*/
public static long computeBin(final long[] histogram) {
int k, kStar; // k = the current threshold; kStar = optimal threshold
final int L = histogram.length; // The total intensity of the image
long N1, N; // N1 = # points with intensity <=k; N = total number of
// points
long Sk; // The total intensity for all histogram points <=k
long S;
double BCV, BCVmax; // The current Between Class Variance and maximum
// BCV
double num, denom; // temporary bookkeeping
// Initialize values:
S = 0;
N = 0;
for (k = 0; k < L; k++) {
S += k * histogram[k]; // Total histogram intensity
N += histogram[k]; // Total number of data points
}
Sk = 0;
N1 = histogram[0]; // The entry for zero intensity
BCV = 0;
BCVmax = 0;
kStar = 0;
// Look at each possible threshold value,
// calculate the between-class variance, and decide if it's a max
for (k = 1; k < L - 1; k++) { // No need to check endpoints k = 0 or k =
// L-1
Sk += k * histogram[k];
N1 += histogram[k];
// The float casting here is to avoid compiler warning about loss of
// precision and
// will prevent overflow in the case of large saturated images
denom = (double) (N1) * (N - N1); // Maximum value of denom is
// (N^2)/4 =
// approx. 3E10
if (denom != 0) {
// Float here is to avoid loss of precision when dividing
num = ((double) N1 / N) * S - Sk; // Maximum value of num =
// 255*N =
// approx 8E7
BCV = (num * num) / denom;
}
else BCV = 0;
if (BCV >= BCVmax) { // Assign the best threshold found so far
BCVmax = BCV;
kStar = k;
}
}
// kStar += 1; // Use QTI convention that intensity -> 1 if intensity >=
// k
// (the algorithm was developed for I-> 1 if I <= k.)
return kStar;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy