All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.scijava.ops.image.threshold.renyiEntropy.ComputeRenyiEntropyThreshold Maven / Gradle / Ivy

The newest version!
/*
 * #%L
 * Image processing operations for SciJava Ops.
 * %%
 * Copyright (C) 2014 - 2024 SciJava developers.
 * %%
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 * #L%
 */

package org.scijava.ops.image.threshold.renyiEntropy;

import org.scijava.ops.image.threshold.AbstractComputeThresholdHistogram;
import net.imglib2.histogram.Histogram1d;
import net.imglib2.type.numeric.RealType;

// NB - this plugin adapted from Gabriel Landini's code of his AutoThreshold
// plugin found in Fiji (version 1.14).

/**
 * Implements a Renyi entropy based threshold method by Kapur, Sahoo,
 * {@literal &} Wong.
 *
 * @author Barry DeZonia
 * @author Gabriel Landini
 * @implNote op names='threshold.renyiEntropy', priority='100.'
 */
public class ComputeRenyiEntropyThreshold> extends
	AbstractComputeThresholdHistogram
{

	/**
	 * @param hist the {@link Histogram1d}
	 * @return the Renyi Entropy threshold value
	 */
	@Override
	public long computeBin(final Histogram1d hist) {
		final long[] histogram = hist.toLongArray();
		return computeBin(histogram);
	}

	/**
	 * Kapur J.N., Sahoo P.K., and Wong A.K.C. (1985) "A New Method for
* Gray-Level Picture Thresholding Using the Entropy of the Histogram"
* Graphical Models and Image Processing, 29(3): 273-285
* M. Emre Celebi
* 06.15.2007
* Ported to ImageJ plugin by G.Landini from E Celebi's fourier_0.8
* routines */ public static long computeBin(final long[] histogram) { int threshold; int opt_threshold; int ih, it; int first_bin; int last_bin; int tmp_var; int t_star1, t_star2, t_star3; int beta1, beta2, beta3; double alpha;/* alpha parameter of the method */ double term; double tot_ent; /* total entropy */ double max_ent; /* max entropy */ double ent_back; /* entropy of the background pixels at a given threshold */ double ent_obj; /* entropy of the object pixels at a given threshold */ double omega; final double[] norm_histo = new double[histogram.length]; /* * normalized * histogram */ final double[] P1 = new double[histogram.length]; /* * cumulative normalized * histogram */ final double[] P2 = new double[histogram.length]; int total = 0; for (ih = 0; ih < histogram.length; ih++) total += histogram[ih]; for (ih = 0; ih < histogram.length; ih++) norm_histo[ih] = (double) histogram[ih] / total; P1[0] = norm_histo[0]; P2[0] = 1.0 - P1[0]; for (ih = 1; ih < histogram.length; ih++) { P1[ih] = P1[ih - 1] + norm_histo[ih]; P2[ih] = 1.0 - P1[ih]; } /* Determine the first non-zero bin */ first_bin = 0; for (ih = 0; ih < histogram.length; ih++) { if (!(Math.abs(P1[ih]) < 2.220446049250313E-16)) { first_bin = ih; break; } } /* Determine the last non-zero bin */ last_bin = histogram.length - 1; for (ih = histogram.length - 1; ih >= first_bin; ih--) { if (!(Math.abs(P2[ih]) < 2.220446049250313E-16)) { last_bin = ih; break; } } /* Maximum Entropy Thresholding - BEGIN */ /* ALPHA = 1.0 */ /* * Calculate the total entropy each gray-level and find the threshold * that maximizes it */ threshold = 0; // was MIN_INT in original code, but if an empty image is // processed it gives an error later on. max_ent = 0.0; for (it = first_bin; it <= last_bin; it++) { /* Entropy of the background pixels */ ent_back = 0.0; for (ih = 0; ih <= it; ih++) { if (histogram[ih] != 0) { ent_back -= (norm_histo[ih] / P1[it]) * Math.log(norm_histo[ih] / P1[it]); } } /* Entropy of the object pixels */ ent_obj = 0.0; for (ih = it + 1; ih < histogram.length; ih++) { if (histogram[ih] != 0) { ent_obj -= (norm_histo[ih] / P2[it]) * Math.log(norm_histo[ih] / P2[it]); } } /* Total entropy */ tot_ent = ent_back + ent_obj; // IJ.log(""+max_ent+" "+tot_ent); if (max_ent < tot_ent) { max_ent = tot_ent; threshold = it; } } t_star2 = threshold; /* Maximum Entropy Thresholding - END */ threshold = 0; // was MIN_INT in original code, but if an empty image is // processed it gives an error later on. max_ent = 0.0; alpha = 0.5; term = 1.0 / (1.0 - alpha); for (it = first_bin; it <= last_bin; it++) { /* Entropy of the background pixels */ ent_back = 0.0; for (ih = 0; ih <= it; ih++) ent_back += Math.sqrt(norm_histo[ih] / P1[it]); /* Entropy of the object pixels */ ent_obj = 0.0; for (ih = it + 1; ih < histogram.length; ih++) ent_obj += Math.sqrt(norm_histo[ih] / P2[it]); /* Total entropy */ tot_ent = term * ((ent_back * ent_obj) > 0.0 ? Math.log(ent_back * ent_obj) : 0.0); if (tot_ent > max_ent) { max_ent = tot_ent; threshold = it; } } t_star1 = threshold; threshold = 0; // was MIN_INT in original code, but if an empty image is // processed it gives an error later on. max_ent = 0.0; alpha = 2.0; term = 1.0 / (1.0 - alpha); for (it = first_bin; it <= last_bin; it++) { /* Entropy of the background pixels */ ent_back = 0.0; for (ih = 0; ih <= it; ih++) ent_back += (norm_histo[ih] * norm_histo[ih]) / (P1[it] * P1[it]); /* Entropy of the object pixels */ ent_obj = 0.0; for (ih = it + 1; ih < histogram.length; ih++) ent_obj += (norm_histo[ih] * norm_histo[ih]) / (P2[it] * P2[it]); /* Total entropy */ tot_ent = term * ((ent_back * ent_obj) > 0.0 ? Math.log(ent_back * ent_obj) : 0.0); if (tot_ent > max_ent) { max_ent = tot_ent; threshold = it; } } t_star3 = threshold; /* Sort t_star values */ if (t_star2 < t_star1) { tmp_var = t_star1; t_star1 = t_star2; t_star2 = tmp_var; } if (t_star3 < t_star2) { tmp_var = t_star2; t_star2 = t_star3; t_star3 = tmp_var; } if (t_star2 < t_star1) { tmp_var = t_star1; t_star1 = t_star2; t_star2 = tmp_var; } /* Adjust beta values */ if (Math.abs(t_star1 - t_star2) <= 5) { if (Math.abs(t_star2 - t_star3) <= 5) { beta1 = 1; beta2 = 2; beta3 = 1; } else { beta1 = 0; beta2 = 1; beta3 = 3; } } else { if (Math.abs(t_star2 - t_star3) <= 5) { beta1 = 3; beta2 = 1; beta3 = 0; } else { beta1 = 1; beta2 = 2; beta3 = 1; } } // IJ.log(""+t_star1+" "+t_star2+" "+t_star3); /* Determine the optimal threshold value */ omega = P1[t_star3] - P1[t_star1]; opt_threshold = (int) (t_star1 * (P1[t_star1] + 0.25 * omega * beta1) + 0.25 * t_star2 * omega * beta2 + t_star3 * (P2[t_star3] + 0.25 * omega * beta3)); return opt_threshold; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy