
org.scijava.ops.image.threshold.renyiEntropy.ComputeRenyiEntropyThreshold Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scijava-ops-image Show documentation
Show all versions of scijava-ops-image Show documentation
Image processing operations for SciJava Ops.
The newest version!
/*
* #%L
* Image processing operations for SciJava Ops.
* %%
* Copyright (C) 2014 - 2024 SciJava developers.
* %%
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* #L%
*/
package org.scijava.ops.image.threshold.renyiEntropy;
import org.scijava.ops.image.threshold.AbstractComputeThresholdHistogram;
import net.imglib2.histogram.Histogram1d;
import net.imglib2.type.numeric.RealType;
// NB - this plugin adapted from Gabriel Landini's code of his AutoThreshold
// plugin found in Fiji (version 1.14).
/**
* Implements a Renyi entropy based threshold method by Kapur, Sahoo,
* {@literal &} Wong.
*
* @author Barry DeZonia
* @author Gabriel Landini
* @implNote op names='threshold.renyiEntropy', priority='100.'
*/
public class ComputeRenyiEntropyThreshold> extends
AbstractComputeThresholdHistogram
{
/**
* @param hist the {@link Histogram1d}
* @return the Renyi Entropy threshold value
*/
@Override
public long computeBin(final Histogram1d hist) {
final long[] histogram = hist.toLongArray();
return computeBin(histogram);
}
/**
* Kapur J.N., Sahoo P.K., and Wong A.K.C. (1985) "A New Method for
* Gray-Level Picture Thresholding Using the Entropy of the Histogram"
* Graphical Models and Image Processing, 29(3): 273-285
* M. Emre Celebi
* 06.15.2007
* Ported to ImageJ plugin by G.Landini from E Celebi's fourier_0.8
* routines
*/
public static long computeBin(final long[] histogram) {
int threshold;
int opt_threshold;
int ih, it;
int first_bin;
int last_bin;
int tmp_var;
int t_star1, t_star2, t_star3;
int beta1, beta2, beta3;
double alpha;/* alpha parameter of the method */
double term;
double tot_ent; /* total entropy */
double max_ent; /* max entropy */
double ent_back; /* entropy of the background pixels at a given threshold */
double ent_obj; /* entropy of the object pixels at a given threshold */
double omega;
final double[] norm_histo = new double[histogram.length]; /*
* normalized
* histogram
*/
final double[] P1 = new double[histogram.length]; /*
* cumulative normalized
* histogram
*/
final double[] P2 = new double[histogram.length];
int total = 0;
for (ih = 0; ih < histogram.length; ih++)
total += histogram[ih];
for (ih = 0; ih < histogram.length; ih++)
norm_histo[ih] = (double) histogram[ih] / total;
P1[0] = norm_histo[0];
P2[0] = 1.0 - P1[0];
for (ih = 1; ih < histogram.length; ih++) {
P1[ih] = P1[ih - 1] + norm_histo[ih];
P2[ih] = 1.0 - P1[ih];
}
/* Determine the first non-zero bin */
first_bin = 0;
for (ih = 0; ih < histogram.length; ih++) {
if (!(Math.abs(P1[ih]) < 2.220446049250313E-16)) {
first_bin = ih;
break;
}
}
/* Determine the last non-zero bin */
last_bin = histogram.length - 1;
for (ih = histogram.length - 1; ih >= first_bin; ih--) {
if (!(Math.abs(P2[ih]) < 2.220446049250313E-16)) {
last_bin = ih;
break;
}
}
/* Maximum Entropy Thresholding - BEGIN */
/* ALPHA = 1.0 */
/*
* Calculate the total entropy each gray-level and find the threshold
* that maximizes it
*/
threshold = 0; // was MIN_INT in original code, but if an empty image is
// processed it gives an error later on.
max_ent = 0.0;
for (it = first_bin; it <= last_bin; it++) {
/* Entropy of the background pixels */
ent_back = 0.0;
for (ih = 0; ih <= it; ih++) {
if (histogram[ih] != 0) {
ent_back -= (norm_histo[ih] / P1[it]) * Math.log(norm_histo[ih] /
P1[it]);
}
}
/* Entropy of the object pixels */
ent_obj = 0.0;
for (ih = it + 1; ih < histogram.length; ih++) {
if (histogram[ih] != 0) {
ent_obj -= (norm_histo[ih] / P2[it]) * Math.log(norm_histo[ih] /
P2[it]);
}
}
/* Total entropy */
tot_ent = ent_back + ent_obj;
// IJ.log(""+max_ent+" "+tot_ent);
if (max_ent < tot_ent) {
max_ent = tot_ent;
threshold = it;
}
}
t_star2 = threshold;
/* Maximum Entropy Thresholding - END */
threshold = 0; // was MIN_INT in original code, but if an empty image is
// processed it gives an error later on.
max_ent = 0.0;
alpha = 0.5;
term = 1.0 / (1.0 - alpha);
for (it = first_bin; it <= last_bin; it++) {
/* Entropy of the background pixels */
ent_back = 0.0;
for (ih = 0; ih <= it; ih++)
ent_back += Math.sqrt(norm_histo[ih] / P1[it]);
/* Entropy of the object pixels */
ent_obj = 0.0;
for (ih = it + 1; ih < histogram.length; ih++)
ent_obj += Math.sqrt(norm_histo[ih] / P2[it]);
/* Total entropy */
tot_ent = term * ((ent_back * ent_obj) > 0.0 ? Math.log(ent_back *
ent_obj) : 0.0);
if (tot_ent > max_ent) {
max_ent = tot_ent;
threshold = it;
}
}
t_star1 = threshold;
threshold = 0; // was MIN_INT in original code, but if an empty image is
// processed it gives an error later on.
max_ent = 0.0;
alpha = 2.0;
term = 1.0 / (1.0 - alpha);
for (it = first_bin; it <= last_bin; it++) {
/* Entropy of the background pixels */
ent_back = 0.0;
for (ih = 0; ih <= it; ih++)
ent_back += (norm_histo[ih] * norm_histo[ih]) / (P1[it] * P1[it]);
/* Entropy of the object pixels */
ent_obj = 0.0;
for (ih = it + 1; ih < histogram.length; ih++)
ent_obj += (norm_histo[ih] * norm_histo[ih]) / (P2[it] * P2[it]);
/* Total entropy */
tot_ent = term * ((ent_back * ent_obj) > 0.0 ? Math.log(ent_back *
ent_obj) : 0.0);
if (tot_ent > max_ent) {
max_ent = tot_ent;
threshold = it;
}
}
t_star3 = threshold;
/* Sort t_star values */
if (t_star2 < t_star1) {
tmp_var = t_star1;
t_star1 = t_star2;
t_star2 = tmp_var;
}
if (t_star3 < t_star2) {
tmp_var = t_star2;
t_star2 = t_star3;
t_star3 = tmp_var;
}
if (t_star2 < t_star1) {
tmp_var = t_star1;
t_star1 = t_star2;
t_star2 = tmp_var;
}
/* Adjust beta values */
if (Math.abs(t_star1 - t_star2) <= 5) {
if (Math.abs(t_star2 - t_star3) <= 5) {
beta1 = 1;
beta2 = 2;
beta3 = 1;
}
else {
beta1 = 0;
beta2 = 1;
beta3 = 3;
}
}
else {
if (Math.abs(t_star2 - t_star3) <= 5) {
beta1 = 3;
beta2 = 1;
beta3 = 0;
}
else {
beta1 = 1;
beta2 = 2;
beta3 = 1;
}
}
// IJ.log(""+t_star1+" "+t_star2+" "+t_star3);
/* Determine the optimal threshold value */
omega = P1[t_star3] - P1[t_star1];
opt_threshold = (int) (t_star1 * (P1[t_star1] + 0.25 * omega * beta1) +
0.25 * t_star2 * omega * beta2 + t_star3 * (P2[t_star3] + 0.25 * omega *
beta3));
return opt_threshold;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy