
org.scijava.ops.image.threshold.shanbhag.ComputeShanbhagThreshold Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scijava-ops-image Show documentation
Show all versions of scijava-ops-image Show documentation
Image processing operations for SciJava Ops.
The newest version!
/*
* #%L
* Image processing operations for SciJava Ops.
* %%
* Copyright (C) 2014 - 2024 SciJava developers.
* %%
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* #L%
*/
package org.scijava.ops.image.threshold.shanbhag;
import org.scijava.ops.image.threshold.AbstractComputeThresholdHistogram;
import net.imglib2.histogram.Histogram1d;
import net.imglib2.type.numeric.RealType;
// NB - this plugin adapted from Gabriel Landini's code of his AutoThreshold
// plugin found in Fiji (version 1.14).
/**
* Implements Shanbhag's threshold method.
*
* @author Barry DeZonia
* @author Gabriel Landini
* @implNote op names='threshold.shanbhag', priority='100.'
*/
public class ComputeShanbhagThreshold> extends
AbstractComputeThresholdHistogram
{
/**
* TODO
*
* @param hist the input {@link Histogram1d}
* @return the Shanbhag threshold value
*/
@Override
public long computeBin(final Histogram1d hist) {
final long[] histogram = hist.toLongArray();
return computeBin(histogram);
}
/**
* 8Shanhbag A.G. (1994) "Utilization of Information Measure as a Means
* of
* Image Thresholding" Graphical Models and Image Processing, 56(5):
* 414-419
* Ported to ImageJ plugin by G.Landini from E Celebi's fourier_0.8
* routines
*/
public static long computeBin(final long[] histogram) {
int threshold;
int ih, it;
int first_bin;
int last_bin;
double term;
double tot_ent; /* total entropy */
double min_ent; /* max entropy */
double ent_back; /* entropy of the background pixels at a given threshold */
double ent_obj; /* entropy of the object pixels at a given threshold */
final double[] norm_histo = new double[histogram.length]; /*
* normalized
* histogram
*/
final double[] P1 = new double[histogram.length]; /*
* cumulative normalized
* histogram
*/
final double[] P2 = new double[histogram.length];
int total = 0;
for (ih = 0; ih < histogram.length; ih++)
total += histogram[ih];
for (ih = 0; ih < histogram.length; ih++)
norm_histo[ih] = (double) histogram[ih] / total;
P1[0] = norm_histo[0];
P2[0] = 1.0 - P1[0];
for (ih = 1; ih < histogram.length; ih++) {
P1[ih] = P1[ih - 1] + norm_histo[ih];
P2[ih] = 1.0 - P1[ih];
}
/* Determine the first non-zero bin */
first_bin = 0;
for (ih = 0; ih < histogram.length; ih++) {
if (!(Math.abs(P1[ih]) < 2.220446049250313E-16)) {
first_bin = ih;
break;
}
}
/* Determine the last non-zero bin */
last_bin = histogram.length - 1;
for (ih = histogram.length - 1; ih >= first_bin; ih--) {
if (!(Math.abs(P2[ih]) < 2.220446049250313E-16)) {
last_bin = ih;
break;
}
}
// Calculate the total entropy each gray-level
// and find the threshold that maximizes it
threshold = -1;
min_ent = Double.POSITIVE_INFINITY;
for (it = first_bin; it <= last_bin; it++) {
/* Entropy of the background pixels */
ent_back = 0.0;
term = 0.5 / P1[it];
for (ih = 1; ih <= it; ih++) { // 0+1?
ent_back -= norm_histo[ih] * Math.log(1.0 - term * P1[ih - 1]);
}
ent_back *= term;
/* Entropy of the object pixels */
ent_obj = 0.0;
term = 0.5 / P2[it];
for (ih = it + 1; ih < histogram.length; ih++) {
ent_obj -= norm_histo[ih] * Math.log(1.0 - term * P2[ih]);
}
ent_obj *= term;
/* Total entropy */
tot_ent = Math.abs(ent_back - ent_obj);
if (tot_ent < min_ent) {
min_ent = tot_ent;
threshold = it;
}
}
return threshold;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy