All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.scijava.ops.image.threshold.shanbhag.ComputeShanbhagThreshold Maven / Gradle / Ivy

The newest version!
/*
 * #%L
 * Image processing operations for SciJava Ops.
 * %%
 * Copyright (C) 2014 - 2024 SciJava developers.
 * %%
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 * #L%
 */

package org.scijava.ops.image.threshold.shanbhag;

import org.scijava.ops.image.threshold.AbstractComputeThresholdHistogram;
import net.imglib2.histogram.Histogram1d;
import net.imglib2.type.numeric.RealType;

// NB - this plugin adapted from Gabriel Landini's code of his AutoThreshold
// plugin found in Fiji (version 1.14).

/**
 * Implements Shanbhag's threshold method.
 *
 * @author Barry DeZonia
 * @author Gabriel Landini
 * @implNote op names='threshold.shanbhag', priority='100.'
 */
public class ComputeShanbhagThreshold> extends
	AbstractComputeThresholdHistogram
{

	/**
	 * TODO
	 *
	 * @param hist the input {@link Histogram1d}
	 * @return the Shanbhag threshold value
	 */
	@Override
	public long computeBin(final Histogram1d hist) {
		final long[] histogram = hist.toLongArray();
		return computeBin(histogram);
	}

	/**
	 * 8Shanhbag A.G. (1994) "Utilization of Information Measure as a Means
* of
* Image Thresholding" Graphical Models and Image Processing, 56(5):
* 414-419
* Ported to ImageJ plugin by G.Landini from E Celebi's fourier_0.8
* routines */ public static long computeBin(final long[] histogram) { int threshold; int ih, it; int first_bin; int last_bin; double term; double tot_ent; /* total entropy */ double min_ent; /* max entropy */ double ent_back; /* entropy of the background pixels at a given threshold */ double ent_obj; /* entropy of the object pixels at a given threshold */ final double[] norm_histo = new double[histogram.length]; /* * normalized * histogram */ final double[] P1 = new double[histogram.length]; /* * cumulative normalized * histogram */ final double[] P2 = new double[histogram.length]; int total = 0; for (ih = 0; ih < histogram.length; ih++) total += histogram[ih]; for (ih = 0; ih < histogram.length; ih++) norm_histo[ih] = (double) histogram[ih] / total; P1[0] = norm_histo[0]; P2[0] = 1.0 - P1[0]; for (ih = 1; ih < histogram.length; ih++) { P1[ih] = P1[ih - 1] + norm_histo[ih]; P2[ih] = 1.0 - P1[ih]; } /* Determine the first non-zero bin */ first_bin = 0; for (ih = 0; ih < histogram.length; ih++) { if (!(Math.abs(P1[ih]) < 2.220446049250313E-16)) { first_bin = ih; break; } } /* Determine the last non-zero bin */ last_bin = histogram.length - 1; for (ih = histogram.length - 1; ih >= first_bin; ih--) { if (!(Math.abs(P2[ih]) < 2.220446049250313E-16)) { last_bin = ih; break; } } // Calculate the total entropy each gray-level // and find the threshold that maximizes it threshold = -1; min_ent = Double.POSITIVE_INFINITY; for (it = first_bin; it <= last_bin; it++) { /* Entropy of the background pixels */ ent_back = 0.0; term = 0.5 / P1[it]; for (ih = 1; ih <= it; ih++) { // 0+1? ent_back -= norm_histo[ih] * Math.log(1.0 - term * P1[ih - 1]); } ent_back *= term; /* Entropy of the object pixels */ ent_obj = 0.0; term = 0.5 / P2[it]; for (ih = it + 1; ih < histogram.length; ih++) { ent_obj -= norm_histo[ih] * Math.log(1.0 - term * P2[ih]); } ent_obj *= term; /* Total entropy */ tot_ent = Math.abs(ent_back - ent_obj); if (tot_ent < min_ent) { min_ent = tot_ent; threshold = it; } } return threshold; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy