All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.scijava.ops.image.threshold.yen.ComputeYenThreshold Maven / Gradle / Ivy

The newest version!
/*
 * #%L
 * Image processing operations for SciJava Ops.
 * %%
 * Copyright (C) 2014 - 2024 SciJava developers.
 * %%
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 * #L%
 */

package org.scijava.ops.image.threshold.yen;

import org.scijava.ops.image.threshold.AbstractComputeThresholdHistogram;
import net.imglib2.histogram.Histogram1d;
import net.imglib2.type.numeric.RealType;

// NB - this plugin adapted from Gabriel Landini's code of his AutoThreshold
// plugin found in Fiji (version 1.14).

/**
 * Implements Yen's threshold method (Yen, Chang, {@literal &} Chang, and Sezgin
 * {@literal &} Sankur).
 *
 * @author Barry DeZonia
 * @author Gabriel Landini
 * @implNote op names='threshold.yen', priority='100.'
 */
public class ComputeYenThreshold> extends
	AbstractComputeThresholdHistogram
{

	/**
	 * TODO
	 *
	 * @param hist the {@link Histogram1d}
	 * @return the Yen threshold value
	 */
	@Override
	public long computeBin(final Histogram1d hist) {
		final long[] histogram = hist.toLongArray();
		return computeBin(histogram);
	}

	/**
	 * Implements Yen thresholding method
* 1) Yen J.C., Chang F.J., and Chang S. (1995) "A New Criterion
* for Automatic Multilevel Thresholding" IEEE Trans. on Image
* Processing, 4(3): 370-378
* 2) Sezgin M. and Sankur B. (2004) "Survey over Image Thresholding
* Techniques and Quantitative Performance Evaluation" Journal of
* Electronic Imaging, 13(1): 146-165
* http://citeseer.ist.psu.edu/sezgin04survey.html *

* M. Emre Celebi
* 06.15.2007
* Ported to ImageJ plugin by G.Landini from E Celebi's fourier_0.8
* routines */ public static long computeBin(final long[] histogram) { int threshold; int ih, it; double crit; double max_crit; final double[] norm_histo = new double[histogram.length]; /* * normalized * histogram */ final double[] P1 = new double[histogram.length]; /* * cumulative normalized * histogram */ final double[] P1_sq = new double[histogram.length]; final double[] P2_sq = new double[histogram.length]; long total = 0; for (ih = 0; ih < histogram.length; ih++) total += histogram[ih]; for (ih = 0; ih < histogram.length; ih++) norm_histo[ih] = (double) histogram[ih] / total; P1[0] = norm_histo[0]; for (ih = 1; ih < histogram.length; ih++) P1[ih] = P1[ih - 1] + norm_histo[ih]; P1_sq[0] = norm_histo[0] * norm_histo[0]; for (ih = 1; ih < histogram.length; ih++) P1_sq[ih] = P1_sq[ih - 1] + norm_histo[ih] * norm_histo[ih]; P2_sq[histogram.length - 1] = 0.0; for (ih = histogram.length - 2; ih >= 0; ih--) P2_sq[ih] = P2_sq[ih + 1] + norm_histo[ih + 1] * norm_histo[ih + 1]; /* Find the threshold that maximizes the criterion */ threshold = -1; max_crit = Double.NEGATIVE_INFINITY; for (it = 0; it < histogram.length; it++) { crit = -1.0 * ((P1_sq[it] * P2_sq[it]) > 0.0 ? Math.log(P1_sq[it] * P2_sq[it]) : 0.0) + 2 * ((P1[it] * (1.0 - P1[it])) > 0.0 ? Math.log( P1[it] * (1.0 - P1[it])) : 0.0); if (crit > max_crit) { max_crit = crit; threshold = it; } } return threshold; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy