All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.scijava.ops.image.topology.eulerCharacteristic.EulerCharacteristic26N Maven / Gradle / Ivy

The newest version!
/*
 * #%L
 * Image processing operations for SciJava Ops.
 * %%
 * Copyright (C) 2014 - 2024 SciJava developers.
 * %%
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 * #L%
 */

package org.scijava.ops.image.topology.eulerCharacteristic;

import net.imglib2.RandomAccess;
import net.imglib2.RandomAccessibleInterval;
import net.imglib2.type.BooleanType;
import net.imglib2.type.numeric.real.DoubleType;

import org.scijava.function.Computers;

/**
 * An Op which calculates the Euler characteristic (χ) of the given 3D binary
 * image.
* Here Euler characteristic is defined as χ = β_0 - β_1 + β_2, where β_i are so * called Betti numbers *
    *
  • β_0 = number of separate particles
  • *
  • β_1 = number of handles
  • *
  • β_2 = number enclosed cavities
  • *
*

* The Op calculates χ by using the triangulation algorithm described by * Toriwaki {@literal &} Yonekura (see below).
* There it's calculated X = ∑Δχ(V), where V is a 2x2x2 neighborhood around each * point in the 3D space.
* We are using the 26-neighborhood version of the algorithm. The Δχ(V) values * here are predetermined. *

*

* For the algorithm see
* Toriwaki J, Yonekura T (2002)
* Euler Number and Connectivity Indexes of a Three Dimensional Digital * Picture
* Forma 17: 183-209
* * http://www.scipress.org/journals/forma/abstract/1703/17030183.html *

*

* For the Betti number definition of Euler characteristic see
* Odgaard A, Gundersen HJG (1993)
* Quantification of connectivity in cancellous bone, with special emphasis on * 3-D reconstructions
* Bone 14: 173-182
* doi:10.1016/8756-3282(93)90245-6 *

* * @author Richard Domander (Royal Veterinary College, London) * @author David Legland - original MatLab implementation * @implNote op names='topology.eulerCharacteristic26N' */ public class EulerCharacteristic26N> implements Computers.Arity1, DoubleType> { /** Δχ(v) for all configurations of a 2x2x2 voxel neighborhood */ private static final int[] EULER_LUT = { 0, 1, 1, 0, 1, 0, -2, -1, 1, -2, 0, -1, 0, -1, -1, 0, 1, 0, -2, -1, -2, -1, -1, -2, -6, -3, -3, -2, -3, -2, 0, -1, 1, -2, 0, -1, -6, -3, -3, -2, -2, -1, -1, -2, -3, 0, -2, -1, 0, -1, -1, 0, -3, -2, 0, -1, -3, 0, -2, -1, 0, 1, 1, 0, 1, -2, -6, -3, 0, -1, -3, -2, -2, -1, -3, 0, -1, -2, -2, -1, 0, -1, -3, -2, -1, 0, 0, -1, -3, 0, 0, 1, -2, -1, 1, 0, -2, -1, -3, 0, -3, 0, 0, 1, -1, 4, 0, 3, 0, 3, 1, 2, -1, -2, -2, -1, -2, -1, 1, 0, 0, 3, 1, 2, 1, 2, 2, 1, 1, -6, -2, -3, -2, -3, -1, 0, 0, -3, -1, -2, -1, -2, -2, -1, -2, -3, -1, 0, -1, 0, 4, 3, -3, 0, 0, 1, 0, 1, 3, 2, 0, -3, -1, -2, -3, 0, 0, 1, -1, 0, 0, -1, -2, 1, -1, 0, -1, -2, -2, -1, 0, 1, 3, 2, -2, 1, -1, 0, 1, 2, 2, 1, 0, -3, -3, 0, -1, -2, 0, 1, -1, 0, -2, 1, 0, -1, -1, 0, -1, -2, 0, 1, -2, -1, 3, 2, -2, 1, 1, 2, -1, 0, 2, 1, -1, 0, -2, 1, -2, 1, 1, 2, -2, 3, -1, 2, -1, 2, 0, 1, 0, -1, -1, 0, -1, 0, 2, 1, -1, 2, 0, 1, 0, 1, 1, 0 }; /** * TODO * * @param interval * @param output */ @Override public void compute(RandomAccessibleInterval interval, DoubleType output) { if (interval.numDimensions() != 3) throw new IllegalArgumentException( "Input must have 3 dimensions!"); final RandomAccess access = interval.randomAccess(); long sumDeltaEuler = 0; for (long z = 0; z < interval.dimension(2) - 1; z++) { for (long y = 0; y < interval.dimension(1) - 1; y++) { for (long x = 0; x < interval.dimension(0) - 1; x++) { int index = neighborhoodEulerIndex(access, x, y, z); sumDeltaEuler += EULER_LUT[index]; } } } output.set(sumDeltaEuler / 8.0); } /** * Determines the LUT index for this 2x2x2 neighborhood * * @param access The space where the neighborhood is * @param x Location of the neighborhood in the 1st spatial dimension (x) * @param y Location of the neighborhood in the 2nd spatial dimension (y) * @param z Location of the neighborhood in the 3rd spatial dimension (z) * @return the index of the Δχ value for this configuration of voxels */ public static > int neighborhoodEulerIndex( final RandomAccess access, final long x, final long y, final long z) { int index = 0; index += getAtLocation(access, x, y, z); index += getAtLocation(access, x + 1, y, z) << 1; index += getAtLocation(access, x, y + 1, z) << 2; index += getAtLocation(access, x + 1, y + 1, z) << 3; index += getAtLocation(access, x, y, z + 1) << 4; index += getAtLocation(access, x + 1, y, z + 1) << 5; index += getAtLocation(access, x, y + 1, z + 1) << 6; index += getAtLocation(access, x + 1, y + 1, z + 1) << 7; return index; } private static > long getAtLocation( final RandomAccess access, final long x, final long y, final long z) { access.setPosition(x, 0); access.setPosition(y, 1); access.setPosition(z, 2); return (long) access.get().getRealDouble(); } }