All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.scijava.ops.image.topology.eulerCharacteristic.EulerCharacteristic26NFloating Maven / Gradle / Ivy

The newest version!
/*
 * #%L
 * Image processing operations for SciJava Ops.
 * %%
 * Copyright (C) 2014 - 2024 SciJava developers.
 * %%
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 * #L%
 */

package org.scijava.ops.image.topology.eulerCharacteristic;

import net.imglib2.RandomAccessibleInterval;
import net.imglib2.type.BooleanType;
import net.imglib2.type.numeric.real.DoubleType;

import org.scijava.function.Computers;

/**
 * An Op which calculates the Euler characteristic (χ) of the given binary
 * image. The object in the image is handled as if it was floating freely in
 * space. That is, elements outside the stack are treated as zeros. Thus voxels
 * touching the edges of the interval do not affect the result. Here Euler
 * characteristic is defined as χ = β_0 - β_1 + β_2, where β_i are so called
 * Betti numbers.
 * 
    *
  • β_0 = number of separate particles
  • *
  • β_1 = number of handles
  • *
  • β_2 = number enclosed cavities
  • *
*

* The Op calculates χ by using the triangulation algorithm described by * Toriwaki {@literal &} Yonekura (see below).
* There it's calculated X = ∑Δχ(V), where V is a 2x2x2 neighborhood around each * point in the 3D space.
* We are using the 26-neighborhood version of the algorithm. The Δχ(V) values * here are predetermined. *

*

* For the algorithm see
* Toriwaki J, Yonekura T (2002)
* Euler Number and Connectivity Indexes of a Three Dimensional Digital * Picture
* Forma 17: 183-209
* * http://www.scipress.org/journals/forma/abstract/1703/17030183.html *

*

* For the Betti number definition of Euler characteristic see
* Odgaard A, Gundersen HJG (1993)
* Quantification of connectivity in cancellous bone, with special emphasis on * 3-D reconstructions
* Bone 14: 173-182
* doi:10.1016/8756-3282(93)90245-6 *

* * @author Richard Domander (Royal Veterinary College, London) * @author Michael Doube (Royal Veterinary College, London) * @implNote op names='topology.eulerCharacteristic26NFloating' */ public class EulerCharacteristic26NFloating> implements Computers.Arity1, DoubleType> { /** Δχ(v) for all configurations of a 2x2x2 voxel neighborhood */ private static final int[] EULER_LUT = new int[256]; // region fill EULER_LUT static { EULER_LUT[1] = 1; EULER_LUT[3] = 0; EULER_LUT[5] = 0; EULER_LUT[7] = -1; EULER_LUT[9] = -2; EULER_LUT[11] = -1; EULER_LUT[13] = -1; EULER_LUT[15] = 0; EULER_LUT[17] = 0; EULER_LUT[19] = -1; EULER_LUT[21] = -1; EULER_LUT[23] = -2; EULER_LUT[25] = -3; EULER_LUT[27] = -2; EULER_LUT[29] = -2; EULER_LUT[31] = -1; EULER_LUT[33] = -2; EULER_LUT[35] = -1; EULER_LUT[37] = -3; EULER_LUT[39] = -2; EULER_LUT[41] = -1; EULER_LUT[43] = -2; EULER_LUT[45] = 0; EULER_LUT[47] = -1; EULER_LUT[49] = -1; EULER_LUT[51] = 0; EULER_LUT[53] = -2; EULER_LUT[55] = -1; EULER_LUT[57] = 0; EULER_LUT[59] = -1; EULER_LUT[61] = 1; EULER_LUT[63] = 0; EULER_LUT[65] = -2; EULER_LUT[67] = -3; EULER_LUT[69] = -1; EULER_LUT[71] = -2; EULER_LUT[73] = -1; EULER_LUT[75] = 0; EULER_LUT[77] = -2; EULER_LUT[79] = -1; EULER_LUT[81] = -1; EULER_LUT[83] = -2; EULER_LUT[85] = 0; EULER_LUT[87] = -1; EULER_LUT[89] = 0; EULER_LUT[91] = 1; EULER_LUT[93] = -1; EULER_LUT[95] = 0; EULER_LUT[97] = -1; EULER_LUT[99] = 0; EULER_LUT[101] = 0; EULER_LUT[103] = 1; EULER_LUT[105] = 4; EULER_LUT[107] = 3; EULER_LUT[109] = 3; EULER_LUT[111] = 2; EULER_LUT[113] = -2; EULER_LUT[115] = -1; EULER_LUT[117] = -1; EULER_LUT[119] = 0; EULER_LUT[121] = 3; EULER_LUT[123] = 2; EULER_LUT[125] = 2; EULER_LUT[127] = 1; EULER_LUT[129] = -6; EULER_LUT[131] = -3; EULER_LUT[133] = -3; EULER_LUT[135] = 0; EULER_LUT[137] = -3; EULER_LUT[139] = -2; EULER_LUT[141] = -2; EULER_LUT[143] = -1; EULER_LUT[145] = -3; EULER_LUT[147] = 0; EULER_LUT[149] = 0; EULER_LUT[151] = 3; EULER_LUT[153] = 0; EULER_LUT[155] = 1; EULER_LUT[157] = 1; EULER_LUT[159] = 2; EULER_LUT[161] = -3; EULER_LUT[163] = -2; EULER_LUT[165] = 0; EULER_LUT[167] = 1; EULER_LUT[169] = 0; EULER_LUT[171] = -1; EULER_LUT[173] = 1; EULER_LUT[175] = 0; EULER_LUT[177] = -2; EULER_LUT[179] = -1; EULER_LUT[181] = 1; EULER_LUT[183] = 2; EULER_LUT[185] = 1; EULER_LUT[187] = 0; EULER_LUT[189] = 2; EULER_LUT[191] = 1; EULER_LUT[193] = -3; EULER_LUT[195] = 0; EULER_LUT[197] = -2; EULER_LUT[199] = 1; EULER_LUT[201] = 0; EULER_LUT[203] = 1; EULER_LUT[205] = -1; EULER_LUT[207] = 0; EULER_LUT[209] = -2; EULER_LUT[211] = 1; EULER_LUT[213] = -1; EULER_LUT[215] = 2; EULER_LUT[217] = 1; EULER_LUT[219] = 2; EULER_LUT[221] = 0; EULER_LUT[223] = 1; EULER_LUT[225] = 0; EULER_LUT[227] = 1; EULER_LUT[229] = 1; EULER_LUT[231] = 2; EULER_LUT[233] = 3; EULER_LUT[235] = 2; EULER_LUT[237] = 2; EULER_LUT[239] = 1; EULER_LUT[241] = -1; EULER_LUT[243] = 0; EULER_LUT[245] = 0; EULER_LUT[247] = 1; EULER_LUT[249] = 2; EULER_LUT[251] = 1; EULER_LUT[253] = 1; EULER_LUT[255] = 0; } // endregion /** * TODO * * @param interval * @param output */ @Override public void compute(RandomAccessibleInterval interval, DoubleType output) { if (interval.numDimensions() != 3) throw new IllegalArgumentException( "Input must have 3 dimensions!"); final Octant octant = new Octant<>(interval); int sumDeltaEuler = 0; for (int z = 0; z <= interval.dimension(2); z++) { for (int y = 0; y <= interval.dimension(1); y++) { for (int x = 0; x <= interval.dimension(0); x++) { octant.setNeighborhood(x, y, z); sumDeltaEuler += getDeltaEuler(octant); } } } output.set(sumDeltaEuler / 8.0); } /** * Determines the Δχ from Toriwaki & Yonekura value for this 2x2x2 * neighborhood */ private static int getDeltaEuler(final Octant octant) { if (octant.isNeighborhoodEmpty()) { return 0; } int index = 1; if (octant.isNeighborForeground(8)) { if (octant.isNeighborForeground(1)) { index |= 128; } if (octant.isNeighborForeground(2)) { index |= 64; } if (octant.isNeighborForeground(3)) { index |= 32; } if (octant.isNeighborForeground(4)) { index |= 16; } if (octant.isNeighborForeground(5)) { index |= 8; } if (octant.isNeighborForeground(6)) { index |= 4; } if (octant.isNeighborForeground(7)) { index |= 2; } } else if (octant.isNeighborForeground(7)) { if (octant.isNeighborForeground(2)) { index |= 128; } if (octant.isNeighborForeground(4)) { index |= 64; } if (octant.isNeighborForeground(1)) { index |= 32; } if (octant.isNeighborForeground(3)) { index |= 16; } if (octant.isNeighborForeground(6)) { index |= 8; } if (octant.isNeighborForeground(5)) { index |= 2; } } else if (octant.isNeighborForeground(6)) { if (octant.isNeighborForeground(3)) { index |= 128; } if (octant.isNeighborForeground(1)) { index |= 64; } if (octant.isNeighborForeground(4)) { index |= 32; } if (octant.isNeighborForeground(2)) { index |= 16; } if (octant.isNeighborForeground(5)) { index |= 4; } } else if (octant.isNeighborForeground(5)) { if (octant.isNeighborForeground(4)) { index |= 128; } if (octant.isNeighborForeground(3)) { index |= 64; } if (octant.isNeighborForeground(2)) { index |= 32; } if (octant.isNeighborForeground(1)) { index |= 16; } } else if (octant.isNeighborForeground(4)) { if (octant.isNeighborForeground(1)) { index |= 8; } if (octant.isNeighborForeground(3)) { index |= 4; } if (octant.isNeighborForeground(2)) { index |= 2; } } else if (octant.isNeighborForeground(3)) { if (octant.isNeighborForeground(2)) { index |= 8; } if (octant.isNeighborForeground(1)) { index |= 4; } } else if (octant.isNeighborForeground(2)) { if (octant.isNeighborForeground(1)) { index |= 2; } } return EULER_LUT[index]; } }