org.scijava.ops.tutorial.ParallelComputation Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scijava-ops-tutorial Show documentation
Show all versions of scijava-ops-tutorial Show documentation
Interactive tutorial for SciJava Ops.
The newest version!
/*-
* #%L
* Interactive tutorial for SciJava Ops.
* %%
* Copyright (C) 2023 - 2024 SciJava developers.
* %%
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* #L%
*/
package org.scijava.ops.tutorial;
import java.util.Arrays;
import java.util.List;
import java.util.function.Function;
import org.scijava.ops.api.OpEnvironment;
import org.scijava.types.Nil;
import net.imglib2.img.Img;
import net.imglib2.img.array.ArrayImgs;
import net.imglib2.loops.LoopBuilder;
import net.imglib2.parallel.Parallelization;
import net.imglib2.type.numeric.integer.UnsignedByteType;
/**
* Using the {@link net.imglib2.parallel.Parallelization} class, we can perform
* independent computations in parallel. This tutorial showcases running many
* Ops in parallel using {@link net.imglib2.parallel.Parallelization}.
*
* @author Gabriel Selzer
*/
public class ParallelComputation {
public static void main(String... args) {
OpEnvironment ops = OpEnvironment.build();
// To compute tasks using Parallelization, we must first gather a list of
// parameters.
List fillValues = Arrays.asList(1.0, 2.0, 3.0, 4.0);
Img data = ArrayImgs.unsignedBytes(10, 10, 10);
Nil> outNil = new Nil<>() {};
// Note that this function will be run many times in parallel
// - it's not terribly complex, but we could do much more
Function> fillImage = fillValue -> {
// create a new image of the same size as our data
var output = ops.op("create.img").input(data).outType(outNil).apply();
// fill it with the fill value
LoopBuilder.setImages(output).forEachPixel(pixel -> pixel.setReal(
fillValue));
// and return it
return output;
};
// Parallelization.getTaskExecutor().forEachApply() takes a list of
// parameters,
// and a function to apply on each parameter in the list. The function will
// then be applied in parallel on each parameter, and the return is a list,
// with the ith output being the application of the function on the ith
// parameter.
List> filledImages = //
Parallelization.getTaskExecutor().forEachApply(fillValues, fillImage);
for (int i = 0; i < fillValues.size(); i++) {
if (filledImages.get(i) != null) {
System.out.println("Image " + i + " was filled with value " +
filledImages.get(i).firstElement().get());
}
}
}
}