All Downloads are FREE. Search and download functionalities are using the official Maven repository.

scodec.Codec.scala Maven / Gradle / Ivy

/*
 * Copyright (c) 2013, Scodec
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors
 *    may be used to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

package scodec

import scala.deriving.*
import scala.compiletime.*

import scodec.bits.{BitVector, ByteVector}
import scala.collection.mutable

/**
  * Supports encoding a value of type `A` to a `BitVector` and decoding a `BitVector` to a value of `A`.
  *
  * Not every value of `A` can be encoded to a bit vector and similarly, not every bit vector can be decoded to a value
  * of type `A`. Hence, both encode and decode return either an error or the result. Furthermore, decode returns the
  * remaining bits in the bit vector that it did not use in decoding.
  *
  * There are various ways to create instances of `Codec`. The trait can be implemented directly or one of the
  * constructor methods in the companion can be used (e.g., `apply`). Most of the methods on `Codec`
  * create return a new codec that has been transformed in some way. For example, the [[xmap]] method
  * converts a `Codec[A]` to a `Codec[B]` given two functions, `A => B` and `B => A`.
  *
  * One of the simplest transformation methods is `def withContext(context: String): Codec[A]`, which
  * pushes the specified context string in to any errors (i.e., `Err`s) returned from encode or decode.
  *
  * See the methods on this trait for additional transformation types.
  *
  * See the [[codecs]] package object for pre-defined codecs for many common data types and combinators for building larger
  * codecs out of smaller ones.
  *
  * ## Tuple Codecs
  *
  * The `::` operator supports combining a `Codec[A]` and a `Codec[B]` in to a `Codec[(A, B)]`.
  *
  * For example: {{{
   val codec: Codec[(Int, Int, Int)] = uint8 :: uint8 :: uint8
 }}}
  *
  * There are various methods on `Codec` that only work on `Codec[A]` for some `A <: Tuple`. Besides the aforementioned
  * `::` method, they include methods like `++`, `flatPrepend`, `flatConcat`, etc. One particularly useful method is
  * `dropUnits`, which removes any `Unit` values from the tuple.
  *
  * Given a `Codec[(X0, X1, ..., Xn)]` and a case class with types `X0` to `Xn` in the same order,
  * the codec can be turned in to a case class codec via the `as` method. For example:
 {{{
  case class Point(x: Int, y: Int, z: Int)
  val threeInts: Codec[(Int, Int, Int)] = uint8 :: uint8 :: uint8
  val point: Codec[Point] = threeInts.as[Point]
 }}}
  *
  * ### flatZip
  *
  * Sometimes when combining codecs, a latter codec depends on a formerly decoded value.
  * The `flatZip` method is important in these types of situations -- it represents a dependency between
  * the left hand side and right hand side. Its signature is `def flatZip[B](f: A => Codec[B]): Codec[(A, B)]`.
  * This is similar to `flatMap` except the return type is `Codec[(A, B)]` instead of `Decoder[B]`.
  *
  * Consider a binary format of an 8-bit unsigned integer indicating the number of bytes following it.
  * To implement this with `flatZip`, we could write: {{{
  val x: Codec[(Int, ByteVector)] = uint8.flatZip { numBytes => bytes(numBytes) }
  val y: Codec[ByteVector] = x.xmap[ByteVector]({ case (_, bv) => bv }, bv => (bv.size, bv))
 }}}
  * In this example, `x` is a `Codec[(Int, ByteVector)]` but we do not need the size directly in the model
  * because it is redundant with the size stored in the `ByteVector`. Hence, we remove the `Int` by
  * `xmap`-ping over `x`. The notion of removing redundant data from models comes up frequently.
  * Note: there is a combinator that expresses this pattern more succinctly -- `variableSizeBytes(uint8, bytes)`.
  *
 *
  * ### flatPrepend
  *
  * When the function passed to `flatZip` returns a `Codec[B]` where `B <: Tuple`, you end up creating
  * right nested tuples instead of a extending the arity of a single tuple. To do the latter, there's
  * `flatPrepend`. It has the signature: {{{
  def flatPrepend[B <: Tuple](f: A => Codec[B]): Codec[A *: B]
 }}}
  * It forms a codec of `A` consed on to `B` when called on a `Codec[A]` and passed a function `A => Codec[B]`.
  * Note that the specified function must return a tuple codec. Implementing our example from earlier
  * using `flatPrepend`: {{{
  val x: Codec[(Int, ByteVector)] = uint8.flatPrepend { numBytes => bytes(numBytes).tuple }
 }}}
  * In this example, `bytes(numBytes)` returns a `Codec[ByteVector]` so we called `.tuple` on it to lift it
  * in to a `Codec[ByteVector *: Unit]`.
  *
  * There are similar methods for flat appending and flat concating.
  *
  * ## Derived Codecs
  *
  * Codecs for case classes and sealed class hierarchies can often be automatically derived.
  *
  * Consider this example: {{{
  case class Point(x: Int, y: Int, z: Int) derives Codec
  Codec[Point].encode(Point(1, 2, 3))
 }}}
  * In this example, no explicit codec was defined for `Point` and instead, one was derived as a result
  * of the `derives Codec` clause. Derivation of a codec for a case class requires each element of the case class to
  * have a given codec of the corresponding type. In this case, each element was an `Int` and there is
  * a `Codec[Int]` given in the companion of `Codec`.
  *
  * Derived codecs include the name of each element in any errors produced when encoding/decoding the element.
  *
  * This works similarly for ADTs / sealed class hierarchies. The binary form is represented as a single
  * unsigned 8-bit integer representing the ordinal of the sum, followed by the derived form of the product.
  *
  * Full examples are available in the test directory of this project.
  */
trait Codec[A] extends Encoder[A], Decoder[A]:
  self =>

  /**
   * Transforms this codec to a `Codec[B]` if `A` is isomorphic to `B`.
   *
   * This is most commonly used to convert a tuple codec to a case class:
   * @example {{{
   * case class Point(x: Int, y: Int, z: Int)
   * val c: Codec[(Int, Int, Int)] = int8 :: int8 :: int8
   * val p: Codec[Point] = c.as[Point]
   * }}}
   */
  def as[B](using iso: Iso[A, B]): Codec[B] = xmap(iso.to, iso.from)

  /**
    * Transforms using two functions, `A => Attempt[B]` and `B => Attempt[A]`.
    */
  final def exmap[B](f: A => Attempt[B], g: B => Attempt[A]): Codec[B] = new Codec[B]:
    def sizeBound: SizeBound = self.sizeBound
    def encode(b: B) = self.econtramap(g).encode(b)
    def decode(buffer: BitVector) = self.emap(f).decode(buffer)

  /**
    * Transforms using the isomorphism described by two functions, `A => B` and `B => A`.
    */
  final def xmap[B](f: A => B, g: B => A): Codec[B] = new Codec[B]:
    def sizeBound: SizeBound = self.sizeBound
    def encode(b: B) = self.encode(g(b))
    def decode(buffer: BitVector) = self.decode(buffer).map(_.map(f))

  /**
    * Lifts this codec in to a codec of a singleton tuple.
    */
  final def tuple: Codec[A *: EmptyTuple] = xmap(_ *: Tuple(), _.head)

  @deprecated("Use .tuple instead", "2.0.0")
  final def hlist: Codec[A *: EmptyTuple] = tuple

  /**
    * Assuming `A` is `Unit`, creates a `Codec[B]` that: encodes the unit followed by a `B`;
    * decodes a unit followed by a `B` and discards the decoded unit.
    *
    */
  final def dropLeft[B](codecB: Codec[B])(using ev: Unit =:= A): Codec[B] =
    (this :: codecB).xmap[B]({ (_, b) => b }, b => (ev(()), b))

  /**
    * Assuming `A` is `Unit`, creates a `Codec[B]` that: encodes the unit followed by a `B`;
    * decodes a unit followed by a `B` and discards the decoded unit.
    *
    * Operator alias of [[dropLeft]].
    */
  final def ~>[B](codecB: Codec[B])(using Unit =:= A): Codec[B] = dropLeft(codecB)

  /**
    * Assuming `B` is `Unit`, creates a `Codec[A]` that: encodes the `A` followed by a unit;
    * decodes an `A` followed by a unit and discards the decoded unit.
    */
  final def dropRight[B](codecB: Codec[B])(using ev: Unit =:= B): Codec[A] =
   (this :: codecB).xmap[A]({ (a, _) => a }, a => (a, ev(())))

  /**
    * Assuming `B` is `Unit`, creates a `Codec[A]` that: encodes the `A` followed by a unit;
    * decodes an `A` followed by a unit and discards the decoded unit.
    *
    * Operator alias of [[dropRight]].
    */
  final def <~[B](codecB: Codec[B])(using Unit =:= B): Codec[A] = dropRight(codecB)

  /**
    * Converts this to a `Codec[Unit]` that encodes using the specified zero value and
    * decodes a unit value when this codec decodes an `A` successfully.
    */
  final def unit(zero: A): Codec[Unit] = xmap[Unit](_ => (), _ => zero)

  /**
    * Returns a new codec that encodes/decodes a value of type `(A, B)` where the codec of `B` is dependent on `A`.
    */
  final def flatZip[B](f: A => Codec[B]): Codec[(A, B)] = new Codec[(A, B)]:
    def sizeBound: SizeBound = self.sizeBound.atLeast
    override def encode(t: (A, B)) = Codec.encodeBoth(self, f(t._1))(t._1, t._2)
    override def decode(buffer: BitVector) =
      (for
        a <- self
        b <- f(a)
      yield (a, b)).decode(buffer)

  /**
    * Returns a new codec that encodes/decodes a value of type `(A, B)` where the codec of `B` is dependent on `A`.
    * Operator alias for [[flatZip]].
    */
  final def >>~[B](f: A => Codec[B]): Codec[(A, B)] = flatZip(f)

  /**
    * Similar to `flatZip` except the `A` type is not visible in the resulting type -- the binary
    * effects of the `Codec[A]` still occur though.
    *
    * Example usage: {{{
     case class Flags(x: Boolean, y: Boolean, z: Boolean)
     (bool :: bool :: bool :: ignore(5)).consume { flgs =>
       conditional(flgs.x, uint8) :: conditional(flgs.y, uint8) :: conditional(flgs.z, uint8)
     } {
       case (x, y, z) => Flags(x.isDefined, y.isDefined, z.isDefined) }
     }
   }}}
    */
  final def consume[B](f: A => Codec[B])(g: B => A): Codec[B] = new Codec[B]:
    def sizeBound = self.sizeBound.atLeast
    def encode(b: B) =
      val a = g(b)
      for
        encA <- self.encode(a)
        encB <- f(a).encode(b)
      yield encA ++ encB
    def decode(bv: BitVector) =
      (for
        a <- self
        b <- f(a)
      yield b).decode(bv)

  final override def complete: Codec[A] = Codec(this, super.complete)

  final override def compact: Codec[A] = Codec(super.compact, this)

  /**
    * Safely lifts this codec to a codec of a supertype.
    *
    * When a subtype of `B` that is not a subtype of `A` is passed to encode,
    * an encoding error is returned.
    */
  final def upcast[B >: A](using reflect.TypeTest[B, A]): Codec[B] = new Codec[B]:
    def sizeBound: SizeBound = self.sizeBound
    def encode(b: B) = b match
      case a: A => self.encode(a)
      case _    => Attempt.failure(Err("not a value of desired type"))
    def decode(bv: BitVector) = self.decode(bv)
    override def toString = self.toString

  /**
    * Safely lifts this codec to a codec of a subtype.
    *
    * When a supertype of `B` that is not a supertype of `A` is decoded,
    * an decoding error is returned.
    */
  final def downcast[B <: A](using reflect.TypeTest[A, B]): Codec[B] = new Codec[B]:
    def sizeBound: SizeBound = self.sizeBound
    def encode(b: B) = self.encode(b)
    def decode(bv: BitVector) = self.decode(bv).flatMap { result =>
      result.value match
        case b: B => Attempt.successful(DecodeResult(b, result.remainder))
        case _    => Attempt.failure(Err("not a value of desired type"))
    }
    override def toString = self.toString

  /**
    * Creates a new codec that is functionally equivalent to this codec but pushes the specified
    * context string in to any errors returned from encode or decode.
    */
  final def withContext(context: String): Codec[A] = new Codec[A]:
    def sizeBound: SizeBound = self.sizeBound
    override def encode(a: A) = self.encode(a).mapErr(_.pushContext(context))
    override def decode(buffer: BitVector) = self.decode(buffer).mapErr(_.pushContext(context))
    override def toString = s"$context($self)"

  /**
    * Creates a new codec that is functionally equivalent to this codec but returns the specified string from `toString`.
    */
  final def withToString(str: => String): Codec[A] = new Codec[A]:
    override def sizeBound: SizeBound = self.sizeBound
    override def encode(a: A) = self.encode(a)
    override def decode(buffer: BitVector) = self.decode(buffer)
    override def toString = str

  override def decodeOnly[AA >: A]: Codec[AA] =
    val sup = super.decodeOnly[AA]
    new Codec[AA]:
      def sizeBound = self.sizeBound
      def encode(a: AA) = sup.encode(a)
      def decode(bits: BitVector) = sup.decode(bits)

/**
  * Companion for [[Codec]].
  */
object Codec extends EncoderFunctions, DecoderFunctions:

  inline def apply[A](using c: Codec[A]): Codec[A] = c

  /**
    * Creates a codec from encoder and decoder functions.
    */
  def apply[A](
      encoder: A => Attempt[BitVector],
      decoder: BitVector => Attempt[DecodeResult[A]]
  ): Codec[A] = new Codec[A]:
    override def sizeBound: SizeBound = SizeBound.unknown
    override def encode(a: A) = encoder(a)
    override def decode(bits: BitVector) = decoder(bits)

  /**
    * Creates a codec from an encoder and a decoder.
    */
  def apply[A](encoder: Encoder[A], decoder: Decoder[A]): Codec[A] = new Codec[A]:
    override def sizeBound: SizeBound = encoder.sizeBound
    override def encode(a: A) = encoder.encode(a)
    override def decode(bits: BitVector) = decoder.decode(bits)

  /**
    * Provides a `Codec[A]` that delegates to a lazily evaluated `Codec[A]`.
    * Typically used to consruct codecs for recursive structures.
    */
  def lazily[A](codec: => Codec[A]): Codec[A] = new Codec[A]:
    @annotation.threadUnsafe lazy val c: Codec[A] = codec
    def sizeBound = c.sizeBound
    def encode(a: A) = c.encode(a)
    def decode(b: BitVector) = c.decode(b)
    override def toString = s"lazily($c)"

  extension [A <: Tuple](codecA: Codec[A])
    inline def dropUnits: Codec[DropUnits[A]] =
      codecA.xmap(a => DropUnits.drop(a), b => DropUnits.insert(b))

  /**
    * When called on a `Codec[A]` for some `A <: Tuple`, returns a new codec that encodes/decodes
    * the tuple `A` followed by the value `B`, where the latter is encoded/decoded with the codec
    * returned from applying `A` to `f`.
    */
  extension [A <: Tuple, B](codecA: Codec[A])
    inline def flatAppend(f: A => Codec[B]): Codec[Tuple.Concat[A, B *: EmptyTuple]] = new Codec[Tuple.Concat[A, B *: EmptyTuple]]:
      def sizeBound = codecA.sizeBound.atLeast
      def encode(ab: Tuple.Concat[A, B *: EmptyTuple]) =
        val size = constValue[Tuple.Size[A]]
        val (a, b) = ab.splitAt(size).asInstanceOf[(A, B *: EmptyTuple)]
        encodeBoth(codecA, f(a))(a, b.head)
      def decode(bv: BitVector) =
        codecA.decode(bv).flatMap { case DecodeResult(a, rem) =>
          f(a).decode(rem).map(_.map(b => (a ++ (b *: EmptyTuple)): Tuple.Concat[A, B *: EmptyTuple]))
          // FIXME cast due to https://github.com/lampepfl/dotty/issues/8321
        }

  /**
    * Builds a `Codec[A *: B]` from a `Codec[A]` and a `Codec[B]` where `B` is a tuple type.
    * That is, this operator is a codec-level tuple prepend operation.
    * @param codec codec to prepend
    */
  extension [A, B <: Tuple](codecA: Codec[A])
    def ::(codecB: Codec[B]): Codec[A *: B] =
      new Codec[A *: B]:
        def sizeBound = codecA.sizeBound + codecB.sizeBound
        def encode(ab: A *: B) = encodeBoth(codecA, codecB)(ab.head, ab.tail)
        def decode(bv: BitVector) = decodeBoth(codecA, codecB)(bv).map(_.map(_ *: _))
        override def toString = s"$codecA :: $codecB"

  /**
    * `codecB :+ codecA` returns a new codec that encodes/decodes the tuple `B` followed by an `A`.
    * That is, this operator is a codec-level tuple append operation.
    */
  extension [A, B <: Tuple](codecB: Codec[B])
    inline def :+(codecA: Codec[A]): Codec[Tuple.Concat[B, A *: EmptyTuple]] =
      codecB ++ codecA.tuple

  /**
    * Builds a `Codec[A ++ B]` from a `Codec[A]` and a `Codec[B]` where `A` and `B` are tuples.
    * That is, this operator is a codec-level tuple concat operation.
    * @param codecA codec to concat
    */
  extension [A <: Tuple, B <: Tuple](codecA: Codec[A])
    inline def ++(codecB: Codec[B]): Codec[Tuple.Concat[A, B]] =
      new Codec[Tuple.Concat[A, B]]:
        def sizeBound = codecA.sizeBound + codecB.sizeBound
        def encode(ab: Tuple.Concat[A, B]) =
          inline val sizeA = constValue[Tuple.Size[A]]
          val (prefix, suffix) = ab.splitAt(sizeA)
          encodeBoth(codecA, codecB)(prefix.asInstanceOf[A], suffix.asInstanceOf[B])
        def decode(bv: BitVector) =
          decodeBoth(codecA, codecB)(bv).map(_.map((a: A, b: B) => (a ++ b).asInstanceOf[Tuple.Concat[A, B]]))
          // FIXME cast due to https://github.com/lampepfl/dotty/issues/8321
        override def toString = s"$codecA :: $codecB"

  /**
    * When called on a `Codec[A]` for some `A <: Tuple`, returns a new codec that encodes/decodes
    * the tuple `A` followed by the tuple `B`, where the latter is encoded/decoded with the codec
    * returned from applying `A` to `f`.
    */
  extension [A <: Tuple, B <: Tuple](codecA: Codec[A])
    inline def flatConcat(f: A => Codec[B]): Codec[Tuple.Concat[A, B]] = new Codec[Tuple.Concat[A, B]]:
      def sizeBound = codecA.sizeBound.atLeast
      def encode(ab: Tuple.Concat[A, B]) =
        val size = constValue[Tuple.Size[A]]
        val (a, b) = ab.splitAt(size).asInstanceOf[(A, B)]
        encodeBoth(codecA, f(a))(a, b)
      def decode(bv: BitVector) =
        codecA.decode(bv).flatMap { case DecodeResult(a, rem) =>
          f(a).decode(rem).map(_.map(b => a ++ b))
        }

  /**
    * When called on a `Codec[A]` where `A` is not a tuple, creates a new codec that encodes/decodes a tuple of `(B, A)`.
    * For example, {{{uint8 :: utf8}}} has type `Codec[(Int, Int)]`.
    */
  extension [A, B](a: Codec[A])
    def ::(b: Codec[B])(using DummyImplicit): Codec[(A, B)] =
      new Codec[(A, B)]:
        def sizeBound = a.sizeBound + b.sizeBound
        def encode(ab: (A, B)) = Codec.encodeBoth(a, b)(ab._1, ab._2)
        def decode(bv: BitVector) = Codec.decodeBoth(a, b)(bv)
        override def toString = s"$a :: $b"

  /**
    * Creates a new codec that encodes/decodes a tuple of `A :: B` given a function `A => Codec[B]`.
    * This allows later parts of a tuple codec to be dependent on earlier values.
    */
  extension [A, B <: Tuple](codecA: Codec[A])
    def flatPrepend(f: A => Codec[B]): Codec[A *: B] =
      new Codec[A *: B]:
        def sizeBound = codecA.sizeBound.atLeast
        def encode(ab: A *: B) = encodeBoth(codecA, f(ab.head))(ab.head, ab.tail)
        def decode(b: BitVector) =
          (for
            a <- codecA
            l <- f(a)
          yield a *: l).decode(b)
        override def toString = s"flatPrepend($codecA, $f)"

  /**
    * Constructs a `Codec[(A, B, ..., N)]` from a tuple `(Codec[A], Codec[B], ..., Codec[N])`.
    */
  def fromTuple[A <: Tuple : Tuple.IsMappedBy[Codec]](a: A): Codec[Tuple.InverseMap[A, Codec]] =
    def go[X <: Tuple](x: X): Codec[? <: Tuple] = x match
      case hd *: tl => hd.asInstanceOf[Codec[?]] :: go(tl)
      case EmptyTuple => codecs.provide(EmptyTuple)
    go(a).asInstanceOf[Codec[Tuple.InverseMap[A, Codec]]]

  inline given derivedTuple[A <: Tuple]: Codec[A] = new Codec[A]:
    def sizeBound = sizeBoundElems[A]
    def encode(t: A) = encodeTuple[A](t, 0)
    def decode(b: BitVector) =
      inline val size = constValue[Tuple.Size[A]]
      decodeTuple[A, A](b, 0, new Array[Any](size))

  private inline def encodeTuple[A <: Tuple](a: Any, i: Int): Attempt[BitVector] =
    inline erasedValue[A] match
      case _: (hd *: tl) =>
        val hdCodec = summonInline[Codec[hd]]
        hdCodec.encode(a.asInstanceOf[Product].productElement(i).asInstanceOf[hd]).flatMap { encHd =>
          encodeTuple[tl](a, i + 1).map { encTl =>
            encHd ++ encTl
          }
        }
      case EmptyTuple =>
        Attempt.successful(BitVector.empty)

  private inline def decodeTuple[T <: Tuple, A <: Tuple](b: BitVector, i: Int, elems: Array[Any]): Attempt[DecodeResult[T]] =
    inline erasedValue[A] match
      case _: (hd *: tl) =>
        val hdCodec = summonInline[Codec[hd]]
        hdCodec.decode(b).flatMap { case DecodeResult(e, rem) =>
          elems(i) = e
          decodeTuple[T, tl](rem, i + 1, elems)
        }
      case EmptyTuple =>
        Attempt.successful(DecodeResult(Tuple.fromArray(elems).asInstanceOf[T], b))

  inline def derived[A](using m: Mirror.Of[A]): Codec[A] = new Codec[A]:
    def sizeBound = inline m match
      case p: Mirror.ProductOf[A] =>
        sizeBoundElems[p.MirroredElemTypes]
      case s: Mirror.SumOf[A] =>
        codecs.uint8.sizeBound + sizeBoundCases[s.MirroredElemTypes]
    def encode(a: A) = inline m match
      case p: Mirror.ProductOf[A] =>
        encodeElems[p.MirroredElemTypes, p.MirroredElemLabels](a.asInstanceOf[Product], 0)
      case s: Mirror.SumOf[A] =>
        val ordinal = s.ordinal(a)
        codecs.uint8.encode(ordinal).flatMap { enc =>
          encodeCases[s.MirroredElemTypes, s.MirroredElemLabels](a, ordinal, 0).map(enc2 => enc ++ enc2)
        }
    def decode(b: BitVector) = inline m match
      case p: Mirror.ProductOf[A] =>
        inline val size = constValue[Tuple.Size[p.MirroredElemTypes]]
        val elems = new Array[Any](size)
        decodeElems[p.MirroredElemTypes, p.MirroredElemLabels](b, 0, elems).map { case DecodeResult(_, rem) =>
          DecodeResult(p.fromProduct(arrayProduct(elems)), rem)
        }
      case s: Mirror.SumOf[A] =>
        codecs.uint8.decode(b).flatMap { case DecodeResult(ordinal, rem) =>
          decodeCases[A, s.MirroredElemTypes, s.MirroredElemLabels](rem, ordinal, 0)
        }

  private inline def sizeBoundElems[A <: Tuple]: SizeBound =
    inline erasedValue[A] match
      case _: (hd *: tl) =>
        summonInline[Codec[hd]].sizeBound + sizeBoundElems[tl]
      case EmptyTuple =>
        SizeBound.exact(0)

  private inline def sizeBoundCases[A <: Tuple]: SizeBound =
    inline erasedValue[A] match
      case _: (hd *: tl) =>
        val hdSize = summonFrom {
          case p: Mirror.ProductOf[`hd`] =>
            sizeBoundElems[p.MirroredElemTypes]
        }
        hdSize | sizeBoundCases[tl]
      case EmptyTuple =>
        SizeBound.exact(0)

  private inline def encodeElems[A <: Tuple, L <: Tuple](a: Product, i: Int): Attempt[BitVector] =
    inline erasedValue[A] match
      case _: (hd *: tl) =>
        inline erasedValue[L] match
          case _: (hdLabel *: tlLabels) =>
            val hdLabelValue = constValue[hdLabel].asInstanceOf[String]
            val hdCodec = summonInline[Codec[hd]].withContext(hdLabelValue)
            hdCodec.encode(a.productElement(i).asInstanceOf[hd]).flatMap { encHd =>
              encodeElems[tl, tlLabels](a, i + 1).map { encTl =>
                encHd ++ encTl
              }
            }
          case EmptyTuple => sys.error("not possible - label for product not available")
      case EmptyTuple =>
        Attempt.successful(BitVector.empty)

  private inline def encodeCases[A <: Tuple, L <: Tuple](a: Any, ordinal: Int, i: Int): Attempt[BitVector] =
    inline erasedValue[A] match
      case _: (hd *: tl) =>
        inline erasedValue[L] match
          case _: (hdLabel *: tlLabels) =>
            if ordinal == i then
              val hdLabelValue = constValue[hdLabel].asInstanceOf[String]
              summonFrom {
                case p: Mirror.ProductOf[`hd`] =>
                  encodeElems[p.MirroredElemTypes, p.MirroredElemLabels](a.asInstanceOf[Product], 0).mapErr(_.pushContext(hdLabelValue))
              }
            else encodeCases[tl, tlLabels](a, ordinal, i + 1)
          case EmptyTuple => sys.error("not possible - label for product not available")
      case EmptyTuple => Attempt.successful(BitVector.empty)

  private inline def decodeElems[A <: Tuple, L <: Tuple](b: BitVector, i: Int, elems: Array[Any]): Attempt[DecodeResult[Any]] =
    inline erasedValue[A] match
      case _: (hd *: tl) =>
        inline erasedValue[L] match
          case _: (hdLabel *: tlLabels) =>
            val hdLabelValue = constValue[hdLabel].asInstanceOf[String]
            val hdCodec = summonInline[Codec[hd]].withContext(hdLabelValue)
            hdCodec.decode(b).flatMap { case DecodeResult(e, rem) =>
              elems(i) = e
              decodeElems[tl, tlLabels](rem, i + 1, elems)
            }
          case EmptyTuple =>
            sys.error("not possible - label for product not available")
      case EmptyTuple =>
        Attempt.successful(DecodeResult((), b))

  private inline def decodeCases[S, A <: Tuple, L <: Tuple](b: BitVector, ordinal: Int, i: Int): Attempt[DecodeResult[S]] =
    inline erasedValue[A] match
      case _: (hd *: tl) =>
        inline erasedValue[L] match
          case _: (hdLabel *: tlLabels) =>
            if ordinal == i then
              summonFrom {
                case s: Mirror.Singleton =>
                  Attempt.successful(DecodeResult(s.fromProduct(EmptyTuple).asInstanceOf[S], b))
                case p: Mirror.ProductOf[`hd` & S] =>
                  val hdLabelValue = constValue[hdLabel].asInstanceOf[String]
                  inline val size = constValue[Tuple.Size[p.MirroredElemTypes]]
                  val elems = new Array[Any](size)
                  decodeElems[p.MirroredElemTypes, p.MirroredElemLabels](b, 0, elems).mapErr(_.pushContext(hdLabelValue)).map(_.map(_ => p.fromProduct(arrayProduct(elems))))
              }
            else decodeCases[S, tl, tlLabels](b, ordinal, i + 1)
          case EmptyTuple =>
            sys.error("not possible - label for product not available")
      case EmptyTuple =>
        Attempt.failure(Err.MatchingDiscriminatorNotFound(ordinal, Nil))

  private def arrayProduct[A](arr: Array[A]): Product = new Product {
    def canEqual(that: Any) = true
    def productArity = arr.size
    def productElement(n: Int) = arr(n)
  }

  given Codec[Byte] = codecs.byte
  given Codec[Short] = codecs.short16
  given Codec[Int] = codecs.int32
  given Codec[Long] = codecs.int64
  given Codec[Float] = codecs.float
  given Codec[Double] = codecs.double
  given Codec[String] = codecs.utf8_32
  given Codec[Boolean] = codecs.bool(8)
  given Codec[BitVector] = codecs.variableSizeBitsLong(codecs.int64, codecs.bits)
  given Codec[ByteVector] = codecs.variableSizeBytesLong(codecs.int64, codecs.bytes)
  given Codec[java.util.UUID] = codecs.uuid

  given [A](using ccount: Codec[Int], ca: Codec[A]): Codec[List[A]] = codecs.listOfN(ccount, ca)
  given [A](using ccount: Codec[Int], ca: Codec[A]): Codec[Vector[A]] = codecs.vectorOfN(ccount, ca)
  given [A](using cguard: Codec[Boolean], ca: Codec[A]): Codec[Option[A]] = codecs.optional(cguard, ca)

  given Transform[Codec] with
    extension [A, B](fa: Codec[A]) def exmap(f: A => Attempt[B], g: B => Attempt[A]): Codec[B] =
      fa.exmap(f, g)




© 2015 - 2025 Weber Informatics LLC | Privacy Policy