sigma.util.GraphUtil.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sigma-state_2.12 Show documentation
Show all versions of sigma-state_2.12 Show documentation
Interpreter of a Sigma-State language
The newest version!
package sigma.util
import sigma.data.DFunc
import debox.{Set => DSet, Buffer => DBuffer}
import debox.cfor
import scala.reflect.ClassTag
object GraphUtil {
/** Build a set of reachable nodes starting form the given nodes and following
* the given neighbours relations. Depth first search algorithm is used.
* @tparam A type of value representing node, should implement equality which is used in debox.Set
* @param starts starting nodes for the search
* @param neighbours a function representing the adjacency matrix of the graph
* @return Set of nodes reachable from the `starts` including `starts` themselves
*/
def depthFirstSetFrom[@specialized(Int) A: ClassTag](starts: DBuffer[A])(neighbours: DFunc[A, DBuffer[A]]): DSet[A] = {
val visited = DSet.ofSize[A](starts.length)
def visit(s: A): Unit = {
if (!(visited(s))) {
visited += s
val ns = neighbours(s)
cfor(0)(_ < ns.length, _ + 1) { i =>
visit(ns(i))
}
}
}
cfor(0)(_ < starts.length, _ + 1) { i =>
visit(starts(i))
}
visited
}
/** Collect and topologically order all reachable nodes starting form the given nodes and following
* the given neighbours relations. Depth first search algorithm is used.
* @tparam A type of value representing node, should implement equality which is used in debox.Set
* @param starts starting nodes for the search
* @param neighbours a function representing the adjacency matrix of the graph
* @return Topologically ordered sequence of nodes reachable from the `starts` including `starts` themselves
*/
def depthFirstOrderFrom[@specialized(Int) A: ClassTag](starts: DBuffer[A], neighbours: DFunc[A, DBuffer[A]]): DBuffer[A] = {
val visited = DSet.ofSize[A](starts.length)
val res = DBuffer.ofSize[A](starts.length)
def visit(s: A): Unit = {
if (!(visited(s))) {
visited += s
// first visit all deps recursively
val ns = neighbours(s)
cfor(0)(_ < ns.length, _ + 1) { i =>
visit(ns(i))
}
// then append this node to result
res += s
}
}
val len = starts.length
cfor(0)(_ < len, _ + 1) { i =>
visit(starts(i))
}
res
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy