org.shredzone.commons.suncalc.MoonIllumination Maven / Gradle / Ivy
Show all versions of commons-suncalc Show documentation
/*
* Shredzone Commons - suncalc
*
* Copyright (C) 2017 Richard "Shred" Körber
* http://commons.shredzone.org
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
package org.shredzone.commons.suncalc;
import static java.lang.Math.*;
import org.shredzone.commons.suncalc.param.Builder;
import org.shredzone.commons.suncalc.param.GenericParameter;
import org.shredzone.commons.suncalc.param.TimeParameter;
import org.shredzone.commons.suncalc.util.BaseBuilder;
import org.shredzone.commons.suncalc.util.JulianDate;
import org.shredzone.commons.suncalc.util.Moon;
import org.shredzone.commons.suncalc.util.Sun;
import org.shredzone.commons.suncalc.util.Vector;
/**
* Calculates the illumination of the moon.
*/
public class MoonIllumination {
private final double fraction;
private final double phase;
private final double angle;
private MoonIllumination(double fraction, double phase, double angle) {
this.fraction = fraction;
this.phase = phase;
this.angle = angle;
}
/**
* Starts the computation of {@link MoonIllumination}.
*
* @return {@link Parameters} to set.
*/
public static Parameters compute() {
return new MoonIlluminationBuilder();
}
/**
* Collects all parameters for {@link MoonIllumination}.
*/
public interface Parameters extends
GenericParameter,
TimeParameter,
Builder {
}
/**
* Builder for {@link MoonIllumination}. Performs the computations based on the
* parameters, and creates a {@link MoonIllumination} object that holds the result.
*/
private static class MoonIlluminationBuilder extends BaseBuilder implements Parameters {
@Override
public MoonIllumination execute() {
JulianDate t = getJulianDate();
Vector s = Sun.position(t);
Vector m = Moon.position(t);
double phi = PI - acos(m.dot(s) / (m.getR() * s.getR()));
Vector sunMoon = m.cross(s);
return new MoonIllumination(
(1 + cos(phi)) / 2,
toDegrees(phi * signum(sunMoon.getTheta())),
toDegrees(sunMoon.getTheta()));
}
}
/**
* Illuminated fraction. {@code 0.0} indicates new moon, {@code 1.0} indicates full
* moon.
*/
public double getFraction() {
return fraction;
}
/**
* Moon phase. Starts at {@code -180.0} (new moon, waxing), passes {@code 0.0} (full
* moon) and moves toward {@code 180.0} (waning, new moon).
*
* Note that for historical reasons, the range of this phase is different to the
* moon phase angle used in {@link MoonPhase}.
*/
public double getPhase() {
return phase;
}
/**
* The angle of the moon illumination relative to earth. The moon is waxing if the
* angle is negative, and waning if positive.
*
* By subtracting {@link MoonPosition#getParallacticAngle()} from {@link #getAngle()},
* one can get the zenith angle of the moons bright limb (anticlockwise). The zenith
* angle can be used do draw the moon shape from the observers perspective (e.g. the
* moon lying on its back).
*/
public double getAngle() {
return angle;
}
/**
* The closest {@link MoonPhase.Phase} that is matching the moon's angle.
*
* @return Closest {@link MoonPhase.Phase}
* @since 2.12
*/
public MoonPhase.Phase getClosestPhase() {
return MoonPhase.Phase.toPhase(phase + 180.0);
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("MoonIllumination[fraction=").append(fraction);
sb.append(", phase=").append(phase);
sb.append("°, angle=").append(angle);
sb.append("°]");
return sb.toString();
}
}