All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.sonar.l10n.javascript.rules.javascript.S6319.html Maven / Gradle / Ivy

There is a newer version: 5.0.0.6962
Show newest version

Amazon SageMaker is a managed machine learning service in a hosted production-ready environment. To train machine learning models, SageMaker instances can process potentially sensitive data, such as personal information that should not be stored unencrypted. In the event that adversaries physically access the storage media, they cannot decrypt encrypted data.

Ask Yourself Whether

  • The instance contains sensitive data that could cause harm when leaked.
  • There are compliance requirements for the service to store data encrypted.

There is a risk if you answered yes to any of those questions.

Recommended Secure Coding Practices

It’s recommended to encrypt SageMaker notebook instances that contain sensitive information. Encryption and decryption are handled transparently by SageMaker, so no further modifications to the application are necessary.

Sensitive Code Example

For aws-cdk-lib.aws-sagemaker.CfnNotebookInstance

import { CfnNotebookInstance } from 'aws-cdk-lib/aws-sagemaker';

new CfnNotebookInstance(this, 'example', {
      instanceType: 'instanceType',
      roleArn: 'roleArn'
}); // Sensitive

Compliant Solution

For aws-cdk-lib.aws-sagemaker.CfnNotebookInstance

import { CfnNotebookInstance } from 'aws-cdk-lib/aws-sagemaker';

const encryptionKey = new Key(this, 'example', {
    enableKeyRotation: true,
});
new CfnNotebookInstance(this, 'example', {
    instanceType: 'instanceType',
    roleArn: 'roleArn',
    kmsKeyId: encryptionKey.keyId
});

See





© 2015 - 2025 Weber Informatics LLC | Privacy Policy