All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.sonar.l10n.py.rules.python.S3776.html Maven / Gradle / Ivy

There is a newer version: 4.23.0.17664
Show newest version

This rule raises an issue when the code cognitive complexity of a function is above a certain threshold.

Why is this an issue?

Cognitive Complexity is a measure of how hard it is to understand the control flow of a unit of code. Code with high cognitive complexity is hard to read, understand, test, and modify.

As a rule of thumb, high cognitive complexity is a sign that the code should be refactored into smaller, easier-to-manage pieces.

Which syntax in code does impact cognitive complexity score?

Here are the core concepts:

  • Cognitive complexity is incremented each time the code breaks the normal linear reading flow.
    This concerns, for example, loop structures, conditionals, catches, switches, jumps to labels, and conditions mixing multiple operators.
  • Each nesting level increases complexity.
    During code reading, the deeper you go through nested layers, the harder it becomes to keep the context in mind.
  • Method calls are free
    A well-picked method name is a summary of multiple lines of code. A reader can first explore a high-level view of what the code is performing then go deeper and deeper by looking at called functions content.
    Note: This does not apply to recursive calls, those will increment cognitive score.

The method of computation is fully detailed in the pdf linked in the resources.

What is the potential impact?

Developers spend more time reading and understanding code than writing it. High cognitive complexity slows down changes and increases the cost of maintenance.

How to fix it

Reducing cognitive complexity can be challenging.
Here are a few suggestions:

  • Extract complex conditions in a new function.
    Mixed operators in condition will increase complexity. Extracting the condition in a new function with an appropriate name will reduce cognitive load.
  • Break down large functions.
    Large functions can be hard to understand and maintain. If a function is doing too many things, consider breaking it down into smaller, more manageable functions. Each function should have a single responsibility.
  • Avoid deep nesting by returning early.
    To avoid the nesting of conditions, process exceptional cases first and return early.

Code examples

Extraction of a complex condition in a new function.

Noncompliant code example

The code is using a complex condition and has a cognitive cost of 5.

def process_eligible_users(users):
    for user in users:             # +1 (for)
        if ((user.is_active and    # +1 (if) +1 (nested) +1 (multiple conditions)
            user.has_profile) or   # +1 (mixed operator)
            user.age > 18 ):
            user.process()

Compliant solution

Even if the cognitive complexity of the whole program did not change, it is easier for a reader to understand the code of the process_eligible_users function, which now only has a cognitive cost of 3.

def process_eligible_users(users):
    for user in users:             # +1 (for)
        if is_eligible_user(user): # +1 (if) +1 (nested)
            user.process()

def is_eligible_user(user):
    return ((user.is_active and user.has_profile) or user.age > 18) # +1 (multiple conditions) +1 (mixed operators)

Break down large functions.

Noncompliant code example

Note: The code is simplified here, to illustrate the purpose. Please imagine there is more happening in the process.

The bellow code has a cognitive complexity score of 8.

def process_user(user):
    if user.is_active():             # +1 (if)
        if user.has_profile():       # +1 (if) +1 (nested)
            ... # process active user with profile
        else:                        # +1 (else)
            ... # process active user without profile
    else:                            # +1 (else)
        if user.has_profile():       # +1 (if) +1 (nested)
            ... # process inactive user with profile
        else:                        # +1 (else)
            ... # process inactive user without profile

This function could be refactored into smaller functions: The complexity is spread over multiple functions and the breaks in flow are no more nested.
The process_user has now a complexity score of two.

Compliant solution

def process_user(user):
    if user.is_active():             # +1 (if)
        process_active_user(user)
    else:                            # +1 (else)
        process_inactive_user(user)

def process_active_user(user):
    if user.has_profile():           # +1 (if) +1 (nested)
        ... # process active user with profile
    else:                            # +1 (else)
        ... # process active user without profile

def process_inactive_user(user):
    if user.has_profile():           # +1 (if) +1 (nested)
        ... # process inactive user with profile
    else:                            # +1 (else)
        ... # process inactive user without profile

Avoid deep nesting by returning early.

Noncompliant code example

The below code has a cognitive complexity of 6.

def calculate(data):
    if data is not None:  # +1 (if)
        total = 0
        for item in data: # +1 (for) +1 (nested)
            if item > 0:  # +1 (if)  +2 (nested)
                total += item * 2
        return total

Compliant solution

Checking for the edge case first flattens the if statements and reduces the cognitive complexity to 4.

def calculate(data):
    if data is None:      # +1 (if)
        return None
    total = 0
    for item in data:     # +1 (for)
        if item > 0:      # +1 (if) +1 (nested)
            total += item * 2
    return total

Pitfalls

As this code is complex, ensure that you have unit tests that cover the code before refactoring.

Resources

Documentation

Articles & blog posts





© 2015 - 2024 Weber Informatics LLC | Privacy Policy