Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/**
* Copyright (C) 2009-2012 Typesafe Inc.
*/
package akka.dispatch
import akka.event.Logging.Error
import scala.Option
import akka.japi.{ Function ⇒ JFunc, Option ⇒ JOption }
import scala.util.continuations._
import java.lang.{ Iterable ⇒ JIterable }
import java.util.{ LinkedList ⇒ JLinkedList }
import scala.annotation.tailrec
import scala.collection.mutable.Stack
import akka.util.{ Duration, BoxedType }
import akka.dispatch.Await.CanAwait
import akka.util.NonFatal
import akka.event.Logging.LogEventException
import akka.event.Logging.Debug
import java.util.concurrent.TimeUnit.NANOSECONDS
import java.util.concurrent.{ ExecutionException, Callable, TimeoutException }
import java.util.concurrent.atomic.{ AtomicInteger, AtomicReferenceFieldUpdater }
import akka.pattern.AskTimeoutException
import scala.util.DynamicVariable
import scala.runtime.BoxedUnit
object Await {
/**
* Internal Akka use only
*/
sealed trait CanAwait
/**
* Classes that implement Awaitable can be used with Await,
* this is used to do blocking operations (blocking in the "pause this thread" sense)
*/
trait Awaitable[+T] {
/**
* Should throw [[java.util.concurrent.TimeoutException]] if times out
* This method should not be called directly.
*/
@throws(classOf[TimeoutException])
def ready(atMost: Duration)(implicit permit: CanAwait): this.type
/**
* Throws exceptions if cannot produce a T within the specified time
* This method should not be called directly.
*/
@throws(classOf[Exception])
def result(atMost: Duration)(implicit permit: CanAwait): T
}
private[this] implicit final val permit = new CanAwait {}
/**
* Blocks the current Thread to wait for the given awaitable to be ready.
* WARNING: Blocking operation, use with caution.
*
* @throws [[java.util.concurrent.TimeoutException]] if times out
* @return The returned value as returned by Awaitable.ready
*/
@throws(classOf[TimeoutException])
def ready[T <: Awaitable[_]](awaitable: T, atMost: Duration): T = awaitable.ready(atMost)
/**
* Blocks the current Thread to wait for the given awaitable to have a result.
* WARNING: Blocking operation, use with caution.
*
* @throws [[java.util.concurrent.TimeoutException]] if times out
* @return The returned value as returned by Awaitable.result
*/
@throws(classOf[Exception])
def result[T](awaitable: Awaitable[T], atMost: Duration): T = awaitable.result(atMost)
}
/**
* Futures is the Java API for Futures and Promises
*/
object Futures {
/**
* Java API, equivalent to Future.apply
*/
def future[T](body: Callable[T], executor: ExecutionContext): Future[T] = Future(body.call)(executor)
/**
* Java API, equivalent to Promise.apply
*/
def promise[T](executor: ExecutionContext): Promise[T] = Promise[T]()(executor)
/**
* Java API, creates an already completed Promise with the specified exception
*/
def failed[T](exception: Throwable, executor: ExecutionContext): Promise[T] = Promise.failed(exception)(executor)
/**
* Java API, Creates an already completed Promise with the specified result
*/
def successful[T](result: T, executor: ExecutionContext): Promise[T] = Promise.successful(result)(executor)
/**
* Java API.
* Returns a Future that will hold the optional result of the first Future with a result that matches the predicate
*/
def find[T <: AnyRef](futures: JIterable[Future[T]], predicate: JFunc[T, java.lang.Boolean], executor: ExecutionContext): Future[JOption[T]] = {
Future.find[T]((scala.collection.JavaConversions.iterableAsScalaIterable(futures)))(predicate.apply(_))(executor).map(JOption.fromScalaOption(_))
}
/**
* Java API.
* Returns a Future to the result of the first future in the list that is completed
*/
def firstCompletedOf[T <: AnyRef](futures: JIterable[Future[T]], executor: ExecutionContext): Future[T] =
Future.firstCompletedOf(scala.collection.JavaConversions.iterableAsScalaIterable(futures))(executor)
/**
* Java API
* A non-blocking fold over the specified futures, with the start value of the given zero.
* The fold is performed on the thread where the last future is completed,
* the result will be the first failure of any of the futures, or any failure in the actual fold,
* or the result of the fold.
*/
def fold[T <: AnyRef, R <: AnyRef](zero: R, futures: JIterable[Future[T]], fun: akka.japi.Function2[R, T, R], executor: ExecutionContext): Future[R] =
Future.fold(scala.collection.JavaConversions.iterableAsScalaIterable(futures))(zero)(fun.apply)(executor)
/**
* Java API.
* Reduces the results of the supplied futures and binary function.
*/
def reduce[T <: AnyRef, R >: T](futures: JIterable[Future[T]], fun: akka.japi.Function2[R, T, R], executor: ExecutionContext): Future[R] =
Future.reduce[T, R](scala.collection.JavaConversions.iterableAsScalaIterable(futures))(fun.apply)(executor)
/**
* Java API.
* Simple version of Future.traverse. Transforms a JIterable[Future[A]] into a Future[JIterable[A]].
* Useful for reducing many Futures into a single Future.
*/
def sequence[A](in: JIterable[Future[A]], executor: ExecutionContext): Future[JIterable[A]] = {
implicit val d = executor
scala.collection.JavaConversions.iterableAsScalaIterable(in).foldLeft(Future(new JLinkedList[A]()))((fr, fa) ⇒
for (r ← fr; a ← fa) yield {
r add a
r
})
}
/**
* Java API.
* Transforms a JIterable[A] into a Future[JIterable[B]] using the provided Function A ⇒ Future[B].
* This is useful for performing a parallel map. For example, to apply a function to all items of a list
* in parallel.
*/
def traverse[A, B](in: JIterable[A], fn: JFunc[A, Future[B]], executor: ExecutionContext): Future[JIterable[B]] = {
implicit val d = executor
scala.collection.JavaConversions.iterableAsScalaIterable(in).foldLeft(Future(new JLinkedList[B]())) { (fr, a) ⇒
val fb = fn(a)
for (r ← fr; b ← fb) yield { r add b; r }
}
}
/**
* Signals that the current thread of execution will potentially engage
* an action that will take a non-trivial amount of time, perhaps by using blocking.IO or using a lot of CPU time,
* giving the system a chance to spawn new threads, reuse old threads or otherwise,
* to prevent starvation and/or unfairness.
*
* Assures that any Future tasks initiated in the current thread will be
* executed asynchronously, including any tasks currently queued to be
* executed in the current thread. This is needed if the current task may
* block, causing delays in executing the remaining tasks which in some
* cases may cause a deadlock.
*
* Usage: Call this method in a callback (map, flatMap etc also count) to a Future,
* if you will be doing blocking in the callback.
*
* Note: Calling 'Await.result(future)' or 'Await.ready(future)' will automatically trigger this method.
*
*/
def blocking(): Unit = Future.blocking()
}
object Future {
/**
* This method constructs and returns a Future that will eventually hold the result of the execution of the supplied body
* The execution is performed by the specified Dispatcher.
*/
def apply[T](body: ⇒ T)(implicit executor: ExecutionContext): Future[T] = {
val promise = Promise[T]()
executor.execute(new Runnable {
def run =
promise complete {
try {
Right(body)
} catch {
case NonFatal(e) ⇒
executor.reportFailure(new LogEventException(Debug("Future", getClass, e.getMessage), e))
Left(e)
}
}
})
promise
}
import scala.collection.mutable.Builder
import scala.collection.generic.CanBuildFrom
/**
* Simple version of Futures.traverse. Transforms a Traversable[Future[A]] into a Future[Traversable[A]].
* Useful for reducing many Futures into a single Future.
*/
def sequence[A, M[_] <: Traversable[_]](in: M[Future[A]])(implicit cbf: CanBuildFrom[M[Future[A]], A, M[A]], executor: ExecutionContext): Future[M[A]] =
in.foldLeft(Promise.successful(cbf(in)): Future[Builder[A, M[A]]])((fr, fa) ⇒ for (r ← fr; a ← fa.asInstanceOf[Future[A]]) yield (r += a)).map(_.result)
/**
* Returns a Future to the result of the first future in the list that is completed
*/
def firstCompletedOf[T](futures: Traversable[Future[T]])(implicit executor: ExecutionContext): Future[T] = {
val futureResult = Promise[T]()
val completeFirst: Either[Throwable, T] ⇒ Unit = futureResult tryComplete _
futures.foreach(_ onComplete completeFirst)
futureResult
}
/**
* Returns a Future that will hold the optional result of the first Future with a result that matches the predicate
*/
def find[T](futures: Traversable[Future[T]])(predicate: T ⇒ Boolean)(implicit executor: ExecutionContext): Future[Option[T]] = {
if (futures.isEmpty) Promise.successful[Option[T]](None)
else {
val result = Promise[Option[T]]()
val ref = new AtomicInteger(futures.size)
val search: Either[Throwable, T] ⇒ Unit = v ⇒ try {
v match {
case Right(r) ⇒ if (predicate(r)) result tryComplete Right(Some(r))
case _ ⇒
}
} finally {
if (ref.decrementAndGet == 0)
result tryComplete Right(None)
}
futures.foreach(_ onComplete search)
result
}
}
/**
* A non-blocking fold over the specified futures, with the start value of the given zero.
* The fold is performed on the thread where the last future is completed,
* the result will be the first failure of any of the futures, or any failure in the actual fold,
* or the result of the fold.
* Example:
*
* val result = Await.result(Future.fold(futures)(0)(_ + _), 5 seconds)
*
*/
def fold[T, R](futures: Traversable[Future[T]])(zero: R)(foldFun: (R, T) ⇒ R)(implicit executor: ExecutionContext): Future[R] = {
if (futures.isEmpty) Promise.successful(zero)
else sequence(futures).map(_.foldLeft(zero)(foldFun))
}
/**
* Reduces the results of the supplied futures and binary operation.
* Example:
*
* val result = Await.result(Futures.reduce(futures)(_ + _), 5 seconds)
*
*/
def reduce[T, R >: T](futures: Traversable[Future[T]])(op: (R, T) ⇒ R)(implicit executor: ExecutionContext): Future[R] = {
if (futures.isEmpty) Promise[R].failure(new NoSuchElementException("reduce attempted on empty collection"))
else sequence(futures).map(_ reduceLeft op)
}
/**
* Transforms a Traversable[A] into a Future[Traversable[B]] using the provided Function A ⇒ Future[B].
* This is useful for performing a parallel map. For example, to apply a function to all items of a list
* in parallel:
*
* val myFutureList = Future.traverse(myList)(x ⇒ Future(myFunc(x)))
*
*/
def traverse[A, B, M[_] <: Traversable[_]](in: M[A])(fn: A ⇒ Future[B])(implicit cbf: CanBuildFrom[M[A], B, M[B]], executor: ExecutionContext): Future[M[B]] =
in.foldLeft(Promise.successful(cbf(in)): Future[Builder[B, M[B]]]) { (fr, a) ⇒
val fb = fn(a.asInstanceOf[A])
for (r ← fr; b ← fb) yield (r += b)
}.map(_.result)
/**
* Captures a block that will be transformed into 'Continuation Passing Style' using Scala's Delimited
* Continuations plugin.
*
* Within the block, the result of a Future may be accessed by calling Future.apply. At that point
* execution is suspended with the rest of the block being stored in a continuation until the result
* of the Future is available. If an Exception is thrown while processing, it will be contained
* within the resulting Future.
*
* This allows working with Futures in an imperative style without blocking for each result.
*
* Completing a Future using 'Promise << Future' will also suspend execution until the
* value of the other Future is available.
*
* The Delimited Continuations compiler plugin must be enabled in order to use this method.
*/
def flow[A](body: ⇒ A @cps[Future[Any]])(implicit executor: ExecutionContext): Future[A] = {
val p = Promise[A]
dispatchTask({ () ⇒
try {
(reify(body) foreachFull (p success, p failure): Future[Any]) onFailure {
case NonFatal(e) ⇒ p tryComplete Left(e)
}
} catch {
case NonFatal(e) ⇒ p tryComplete Left(e)
}
}, true)
p.future
}
/**
* Signals that the current thread of execution will potentially engage
* an action that will take a non-trivial amount of time, perhaps by using blocking.IO or using a lot of CPU time,
* giving the system a chance to spawn new threads, reuse old threads or otherwise,
* to prevent starvation and/or unfairness.
*
* Assures that any Future tasks initiated in the current thread will be
* executed asynchronously, including any tasks currently queued to be
* executed in the current thread. This is needed if the current task may
* block, causing delays in executing the remaining tasks which in some
* cases may cause a deadlock.
*
* Note: Calling 'Await.result(future)' or 'Await.ready(future)' will automatically trigger this method.
*
* For example, in the following block of code the call to 'latch.open'
* might not be executed until after the call to 'latch.await', causing
* a deadlock. By adding 'Future.blocking()' the call to 'latch.open'
* will instead be dispatched separately from the current block, allowing
* it to be run in parallel:
*
* val latch = new StandardLatch
* val future = Future() map { _ ⇒
* Future.blocking()
* val nested = Future()
* nested foreach (_ ⇒ latch.open)
* latch.await
* }
*
*/
def blocking(): Unit =
_taskStack.get match {
case stack if (stack ne null) && stack.nonEmpty ⇒
val executionContext = _executionContext.value match {
case null ⇒ throw new IllegalStateException("'blocking' needs to be invoked inside a Future callback.")
case some ⇒ some
}
val tasks = stack.elems
stack.clear()
_taskStack.remove()
dispatchTask(() ⇒ _taskStack.get.elems = tasks, true)(executionContext)
case _ ⇒ _taskStack.remove()
}
private val _taskStack = new ThreadLocal[Stack[() ⇒ Unit]]()
private val _executionContext = new DynamicVariable[ExecutionContext](null)
/**
* Internal API, do not call
*/
private[akka] def dispatchTask(task: () ⇒ Unit, force: Boolean = false)(implicit executor: ExecutionContext): Unit =
_taskStack.get match {
case stack if (stack ne null) && (executor eq _executionContext.value) && !force ⇒ stack push task
case _ ⇒ executor.execute(
new Runnable {
def run =
try {
_executionContext.withValue(executor) {
val taskStack = Stack.empty[() ⇒ Unit]
taskStack push task
_taskStack set taskStack
while (taskStack.nonEmpty) {
val next = taskStack.pop()
try {
next.apply()
} catch {
case NonFatal(e) ⇒ executor.reportFailure(e)
}
}
}
} finally {
_taskStack.remove()
}
})
}
}
/**
* Trait representing a value that may not have been computed yet.
*
* @define asyncCallbackWarning
*
* Note: the callback function may (and probably will) run in another thread,
* and therefore should not refer to any unsynchronized state. In
* particular, if using this method from an actor, do not access
* the state of the actor from the callback function.
* [[akka.dispatch.Promise]].`completeWith`,
* [[akka.pattern.PipeToSupport.PipeableFuture]].`pipeTo`,
* and [[akka.dispatch.Future]].`fallbackTo` are some methods to consider
* using when possible, to avoid concurrent callbacks.
*/
sealed trait Future[+T] extends Await.Awaitable[T] {
protected implicit def executor: ExecutionContext
protected final def resolve[X](source: Either[Throwable, X]): Either[Throwable, X] = source match {
case Left(t: scala.runtime.NonLocalReturnControl[_]) ⇒ Right(t.value.asInstanceOf[X])
case Left(t: InterruptedException) ⇒ Left(new RuntimeException("Boxed InterruptedException", t))
case _ ⇒ source
}
/**
* @return a new Future that will contain a tuple containing the successful result of this and that Future.
* If this or that fail, they will race to complete the returned Future with their failure.
* The returned Future will not be completed if neither this nor that are completed.
*/
def zip[U](that: Future[U]): Future[(T, U)] = {
val p = Promise[(T, U)]()
onComplete {
case Left(t) ⇒ p failure t
case Right(r) ⇒ that onSuccess { case r2 ⇒ p success ((r, r2)) }
}
that onFailure { case f ⇒ p tryComplete Left(f) }
p.future
}
/**
* For use only within a Future.flow block or another compatible Delimited Continuations reset block.
*
* Returns the result of this Future without blocking, by suspending execution and storing it as a
* continuation until the result is available.
*/
def apply(): T @cps[Future[Any]] = shift(this flatMap (_: T ⇒ Future[Any]))
/**
* Tests whether this Future has been completed.
*/
def isCompleted: Boolean
/**
* The contained value of this Future. Before this Future is completed
* the value will be None. After completion the value will be Some(Right(t))
* if it contains a valid result, or Some(Left(error)) if it contains
* an exception.
*/
def value: Option[Either[Throwable, T]]
/**
* When this Future is completed, apply the provided function to the
* Future. If the Future has already been completed, this will apply
* immediately. Multiple
* callbacks may be registered; there is no guarantee that they will be
* executed in a particular order.
*
* $asyncCallbackWarning
*/
def onComplete[U](func: Either[Throwable, T] ⇒ U): this.type
/**
* When the future is completed with a valid result, apply the provided
* PartialFunction to the result. See `onComplete` for more details.
*
* future onSuccess {
* case Foo ⇒ target ! "foo"
* case Bar ⇒ target ! "bar"
* }
*
*
* $asyncCallbackWarning
*/
final def onSuccess[U](pf: PartialFunction[T, U]): this.type = onComplete {
case Right(r) if pf isDefinedAt r ⇒ pf(r)
case _ ⇒
}
/**
* When the future is completed with an exception, apply the provided
* PartialFunction to the exception. See `onComplete` for more details.
*
*
* $asyncCallbackWarning
*/
final def onFailure[U](pf: PartialFunction[Throwable, U]): this.type = onComplete {
case Left(ex) if pf isDefinedAt ex ⇒ pf(ex)
case _ ⇒
}
/**
* Returns a failure projection of this Future
* If `this` becomes completed with a failure, that failure will be the success of the returned Future
* If `this` becomes completed with a result, then the returned future will fail with a NoSuchElementException
*/
final def failed: Future[Throwable] = {
val p = Promise[Throwable]()
this.onComplete {
case Left(t) ⇒ p success t
case Right(r) ⇒ p failure new NoSuchElementException("Future.failed not completed with a throwable. Instead completed with: " + r)
}
p.future
}
/**
* Returns a new Future that will either hold the successful value of this Future,
* or, it this Future fails, it will hold the result of "that" Future.
*/
def fallbackTo[U >: T](that: Future[U]): Future[U] = {
val p = Promise[U]()
onComplete {
case r @ Right(_) ⇒ p complete r
case _ ⇒ p completeWith that
}
p.future
}
/**
* Creates a new Future that will handle any matching Throwable that this
* Future might contain. If there is no match, or if this Future contains
* a valid result then the new Future will contain the same.
* Example:
*
*
* $asyncCallbackWarning
*/
final def recover[A >: T](pf: PartialFunction[Throwable, A]): Future[A] = {
val p = Promise[A]()
onComplete {
case Left(e) if pf isDefinedAt e ⇒ p.complete(try { Right(pf(e)) } catch { case NonFatal(x) ⇒ Left(x) })
case otherwise ⇒ p complete otherwise
}
p.future
}
/**
* Returns a new Future that will, in case this future fails,
* be completed with the resulting Future of the given PartialFunction,
* if the given PartialFunction matches the failure of the original Future.
*
* If the PartialFunction throws, that Throwable will be propagated to the returned Future.
*
* Example:
*
* {{{
* val f = Future { Int.MaxValue }
* Future (6 / 0) recoverWith { case e: ArithmeticException => f } // result: Int.MaxValue
* }}}
*
* $asyncCallbackWarning
*/
def recoverWith[U >: T](pf: PartialFunction[Throwable, Future[U]]): Future[U] = {
val p = Promise[U]()
onComplete {
case Left(t) if pf isDefinedAt t ⇒
try { p completeWith pf(t) } catch { case NonFatal(t) ⇒ p complete resolve(Left(t)) }
case otherwise ⇒ p complete otherwise
}
p.future
}
/**
* Returns a new Future that will contain the completed result of this Future,
* and which will invoke the supplied PartialFunction when completed.
*
* This allows for establishing order of side-effects.
*
* {{{
* Future { 5 } andThen {
* case something => assert(something is awesome)
* } andThen {
* case Left(t) => handleProblem(t)
* case Right(v) => dealWithSuccess(v)
* }
* }}}
*
* $asyncCallbackWarning
*/
def andThen[U](pf: PartialFunction[Either[Throwable, T], U]): Future[T] = {
val p = Promise[T]()
onComplete { case r ⇒ try if (pf isDefinedAt r) pf(r) finally p complete r }
p.future
}
/**
* Creates a new Future by applying a function to the successful result of
* this Future. If this Future is completed with an exception then the new
* Future will also contain this exception.
* Example:
*
* val future1 = for {
* a: Int <- actor ? "Hello" // returns 5
* b: String <- actor ? a // returns "10"
* c: String <- actor ? 7 // returns "14"
* } yield b + "-" + c
*
*
* $asyncCallbackWarning
*/
final def map[A](f: T ⇒ A): Future[A] = {
val future = Promise[A]()
onComplete {
case l: Left[_, _] ⇒ future complete l.asInstanceOf[Either[Throwable, A]]
case Right(res) ⇒
future complete (try {
Right(f(res))
} catch {
case NonFatal(e) ⇒
executor.reportFailure(new LogEventException(Debug("Future", getClass, e.getMessage), e))
Left(e)
})
}
future
}
/**
* Creates a new Future[A] which is completed with this Future's result if
* that conforms to A's erased type or a ClassCastException otherwise.
*
* When used from Java, to create the Manifest, use:
* import static akka.japi.Util.manifest;
* future.mapTo(manifest(MyClass.class));
*/
final def mapTo[A](implicit m: Manifest[A]): Future[A] = {
val fa = Promise[A]()
onComplete {
case l: Left[_, _] ⇒ fa complete l.asInstanceOf[Either[Throwable, A]]
case Right(t) ⇒
fa complete (try {
Right(BoxedType(m.erasure).cast(t).asInstanceOf[A])
} catch {
case e: ClassCastException ⇒ Left(e)
})
}
fa.future
}
/**
* Creates a new Future by applying a function to the successful result of
* this Future, and returns the result of the function as the new Future.
* If this Future is completed with an exception then the new Future will
* also contain this exception.
* Example:
*
* val future1 = for {
* a: Int <- actor ? "Hello" // returns 5
* b: String <- actor ? a // returns "10"
* c: String <- actor ? 7 // returns "14"
* } yield b + "-" + c
*
*
* $asyncCallbackWarning
*/
final def flatMap[A](f: T ⇒ Future[A]): Future[A] = {
val p = Promise[A]()
onComplete {
case l: Left[_, _] ⇒ p complete l.asInstanceOf[Either[Throwable, A]]
case Right(r) ⇒
try {
p completeWith f(r)
} catch {
case NonFatal(e) ⇒
executor.reportFailure(new LogEventException(Debug("Future", getClass, e.getMessage), e))
p complete Left(e)
case t ⇒
p complete Left(new ExecutionException(t)); throw t
}
}
p.future
}
/**
* Same as onSuccess { case r => f(r) } but is also used in for-comprehensions
*
* $asyncCallbackWarning
*/
final def foreach[U](f: T ⇒ U): Unit = onComplete {
case Right(r) ⇒ f(r)
case _ ⇒
}
/**
* Used by for-comprehensions
*
* $asyncCallbackWarning
*/
final def withFilter(p: T ⇒ Boolean) = new FutureWithFilter[T](this, p)
final class FutureWithFilter[+A](self: Future[A], p: A ⇒ Boolean) {
def foreach(f: A ⇒ Unit): Unit = self filter p foreach f
def map[B](f: A ⇒ B): Future[B] = self filter p map f
def flatMap[B](f: A ⇒ Future[B]): Future[B] = self filter p flatMap f
def withFilter(q: A ⇒ Boolean): FutureWithFilter[A] = new FutureWithFilter[A](self, x ⇒ p(x) && q(x))
}
/**
* Returns a new Future that will hold the successful result of this Future if it matches
* the given predicate, if it doesn't match, the resulting Future will be a failed Future
* with a MatchError, of if this Future fails, that failure will be propagated to the returned Future
*
* $asyncCallbackWarning
*/
final def filter(pred: T ⇒ Boolean): Future[T] = {
val p = Promise[T]()
onComplete {
case l: Left[_, _] ⇒ p complete l.asInstanceOf[Either[Throwable, T]]
case r @ Right(res) ⇒ p complete (try {
if (pred(res)) r else Left(new MatchError(res))
} catch {
case NonFatal(e) ⇒
executor.reportFailure(new LogEventException(Debug("Future", getClass, e.getMessage), e))
Left(e)
})
}
p.future
}
}
object Promise {
/**
* Creates a non-completed Promise
*
* Scala API
*/
def apply[A]()(implicit executor: ExecutionContext): Promise[A] = new DefaultPromise[A]()
/**
* Creates an already completed Promise with the specified exception
*/
def failed[T](exception: Throwable)(implicit executor: ExecutionContext): Promise[T] = new KeptPromise[T](Left(exception))
/**
* Creates an already completed Promise with the specified result
*/
def successful[T](result: T)(implicit executor: ExecutionContext): Promise[T] = new KeptPromise[T](Right(result))
}
/**
* Essentially this is the Promise (or write-side) of a Future (read-side).
*/
trait Promise[T] extends Future[T] {
/**
* Returns the Future associated with this Promise
*/
def future: Future[T] = this
/**
* Completes this Promise with the specified result, if not already completed.
* @return whether this call completed the Promise
*/
def tryComplete(value: Either[Throwable, T]): Boolean
/**
* Completes this Promise with the specified result, if not already completed.
* @throws IllegalStateException if already completed, this is to aid in debugging of complete-races,
* use tryComplete to do a conditional complete.
* @return this
*/
final def complete(value: Either[Throwable, T]): this.type =
if (tryComplete(value)) this else throw new IllegalStateException("Promise already completed: " + this + " tried to complete with " + value)
/**
* Completes this Promise with the specified result, if not already completed.
* @return this
*/
final def success(result: T): this.type = complete(Right(result))
/**
* Completes this Promise with the specified exception, if not already completed.
* @return this
*/
final def failure(exception: Throwable): this.type = complete(Left(exception))
/**
* Completes this Promise with the specified other Future, when that Future is completed,
* unless this Promise has already been completed.
* @return this.
*/
final def completeWith(other: Future[T]): this.type = {
other onComplete { tryComplete(_) }
this
}
final def <<(value: T): Future[T] @cps[Future[Any]] = shift { cont: (Future[T] ⇒ Future[Any]) ⇒ cont(complete(Right(value))) }
final def <<(other: Future[T]): Future[T] @cps[Future[Any]] = shift { cont: (Future[T] ⇒ Future[Any]) ⇒
val fr = Promise[Any]()
val thisPromise = this
thisPromise completeWith other onComplete { v ⇒
try {
fr completeWith cont(thisPromise)
} catch {
case NonFatal(e) ⇒
executor.reportFailure(new LogEventException(Debug("Future", getClass, e.getMessage), e))
fr failure e
}
}
fr
}
@deprecated("Was never officially supported or documented, will be removed in Akka 2.1", "2.0.2")
final def <<(stream: PromiseStreamOut[T]): Future[T] @cps[Future[Any]] = shift { cont: (Future[T] ⇒ Future[Any]) ⇒
val fr = Promise[Any]()
val f = stream.dequeue(this)
f.onComplete { _ ⇒
try {
fr completeWith cont(f)
} catch {
case NonFatal(e) ⇒
executor.reportFailure(new LogEventException(Debug("Future", getClass, e.getMessage), e))
fr failure e
}
}
fr
}
}
//Companion object to FState, just to provide a cheap, immutable default entry
private[dispatch] object DefaultPromise {
def EmptyPending[T](): List[T] = Nil
}
/**
* The default concrete Future implementation.
*/
class DefaultPromise[T](implicit val executor: ExecutionContext) extends AbstractPromise with Promise[T] {
self ⇒
protected final def tryAwait(atMost: Duration): Boolean = {
Future.blocking
@tailrec
def awaitUnsafe(waitTimeNanos: Long): Boolean = {
if (!isCompleted && waitTimeNanos > 0) {
val ms = NANOSECONDS.toMillis(waitTimeNanos)
val ns = (waitTimeNanos % 1000000l).toInt //As per object.wait spec
val start = System.nanoTime()
try { synchronized { if (!isCompleted) wait(ms, ns) } } catch { case e: InterruptedException ⇒ }
awaitUnsafe(waitTimeNanos - (System.nanoTime() - start))
} else isCompleted
}
awaitUnsafe(if (atMost.isFinite) atMost.toNanos else Long.MaxValue)
}
@throws(classOf[TimeoutException])
def ready(atMost: Duration)(implicit permit: CanAwait): this.type =
if (isCompleted || tryAwait(atMost)) this
else throw new TimeoutException("Futures timed out after [" + atMost.toMillis + "] milliseconds")
@throws(classOf[Exception])
def result(atMost: Duration)(implicit permit: CanAwait): T =
ready(atMost).value.get match {
case Left(e: AskTimeoutException) ⇒ throw new AskTimeoutException(e.getMessage, e) // to get meaningful stack trace
case Left(e) ⇒ throw e
case Right(r) ⇒ r
}
def value: Option[Either[Throwable, T]] = getState match {
case _: List[_] ⇒ None
case c: Either[_, _] ⇒ Some(c.asInstanceOf[Either[Throwable, T]])
}
def isCompleted(): Boolean = getState match {
case _: Either[_, _] ⇒ true
case _ ⇒ false
}
@inline
private[this] final def updater = AbstractPromise.updater.asInstanceOf[AtomicReferenceFieldUpdater[AbstractPromise, AnyRef]]
@inline
protected final def updateState(oldState: AnyRef, newState: AnyRef): Boolean = updater.compareAndSet(this, oldState, newState)
@inline
protected final def getState: AnyRef = updater.get(this)
def tryComplete(value: Either[Throwable, T]): Boolean = {
val callbacks: List[Either[Throwable, T] ⇒ Unit] = {
try {
@tailrec
def tryComplete(v: Either[Throwable, T]): List[Either[Throwable, T] ⇒ Unit] = {
getState match {
case raw: List[_] ⇒
val cur = raw.asInstanceOf[List[Either[Throwable, T] ⇒ Unit]]
if (updateState(cur, v)) cur else tryComplete(v)
case _ ⇒ null
}
}
tryComplete(resolve(value))
} finally {
synchronized { notifyAll() } //Notify any evil blockers
}
}
callbacks match {
case null ⇒ false
case cs if cs.isEmpty ⇒ true
case cs ⇒ Future.dispatchTask(() ⇒ cs.foreach(f ⇒ notifyCompleted(f, value))); true
}
}
def onComplete[U](func: Either[Throwable, T] ⇒ U): this.type = {
@tailrec //Returns whether the future has already been completed or not
def tryAddCallback(): Either[Throwable, T] = {
val cur = getState
cur match {
case r: Either[_, _] ⇒ r.asInstanceOf[Either[Throwable, T]]
case listeners: List[_] ⇒ if (updateState(listeners, func :: listeners)) null else tryAddCallback()
}
}
tryAddCallback() match {
case null ⇒ this
case completed ⇒
Future.dispatchTask(() ⇒ notifyCompleted(func, completed))
this
}
}
private final def notifyCompleted[U](func: Either[Throwable, T] ⇒ U, result: Either[Throwable, T]): Unit =
try func(result) catch { case NonFatal(e) ⇒ executor reportFailure e }
}
/**
* An already completed Future is seeded with it's result at creation, is useful for when you are participating in
* a Future-composition but you already have a value to contribute.
*/
final class KeptPromise[T](suppliedValue: Either[Throwable, T])(implicit val executor: ExecutionContext) extends Promise[T] {
val value = Some(resolve(suppliedValue))
def tryComplete(value: Either[Throwable, T]): Boolean = false
def onComplete[U](func: Either[Throwable, T] ⇒ U): this.type = {
val completedAs = value.get
Future dispatchTask (() ⇒ func(completedAs))
this
}
def isCompleted(): Boolean = true
def ready(atMost: Duration)(implicit permit: CanAwait): this.type = this
def result(atMost: Duration)(implicit permit: CanAwait): T = value.get match {
case Left(e) ⇒ throw e
case Right(r) ⇒ r
}
}
/**
* This class contains bridge classes between Scala and Java.
* Internal use only.
*/
object japi {
@deprecated("Do not use this directly, use subclasses of this", "2.0")
class CallbackBridge[-T] extends PartialFunction[T, BoxedUnit] {
override final def isDefinedAt(t: T): Boolean = true
override final def apply(t: T): BoxedUnit = {
internal(t)
BoxedUnit.UNIT
}
protected def internal(result: T): Unit = ()
}
@deprecated("Do not use this directly, use 'Recover'", "2.0")
class RecoverBridge[+T] extends PartialFunction[Throwable, T] {
override final def isDefinedAt(t: Throwable): Boolean = true
override final def apply(t: Throwable): T = internal(t)
protected def internal(result: Throwable): T = null.asInstanceOf[T]
}
@deprecated("Do not use this directly, use subclasses of this", "2.0")
class BooleanFunctionBridge[-T] extends scala.Function1[T, Boolean] {
override final def apply(t: T): Boolean = internal(t)
protected def internal(result: T): Boolean = false
}
@deprecated("Do not use this directly, use subclasses of this", "2.0")
class UnitFunctionBridge[-T] extends (T ⇒ BoxedUnit) {
override final def apply(t: T): BoxedUnit = {
internal(t)
BoxedUnit.UNIT
}
protected def internal(result: T): Unit = ()
}
}
/**
* Callback for when a Future is completed successfully
* SAM (Single Abstract Method) class
*
* Java API
*/
abstract class OnSuccess[-T] extends japi.CallbackBridge[T] {
protected final override def internal(result: T) = onSuccess(result)
/**
* This method will be invoked once when/if a Future that this callback is registered on
* becomes successfully completed
*/
@throws(classOf[Throwable])
def onSuccess(result: T): Unit
}
/**
* Callback for when a Future is completed with a failure
* SAM (Single Abstract Method) class
*
* Java API
*/
abstract class OnFailure extends japi.CallbackBridge[Throwable] {
protected final override def internal(failure: Throwable) = onFailure(failure)
/**
* This method will be invoked once when/if a Future that this callback is registered on
* becomes completed with a failure
*/
@throws(classOf[Throwable])
def onFailure(failure: Throwable): Unit
}
/**
* Callback for when a Future is completed with either failure or a success
* SAM (Single Abstract Method) class
*
* Java API
*/
abstract class OnComplete[-T] extends japi.CallbackBridge[Either[Throwable, T]] {
protected final override def internal(value: Either[Throwable, T]): Unit = value match {
case Left(t) ⇒ onComplete(t, null.asInstanceOf[T])
case Right(r) ⇒ onComplete(null, r)
}
/**
* This method will be invoked once when/if a Future that this callback is registered on
* becomes completed with a failure or a success.
* In the case of success then "failure" will be null, and in the case of failure the "success" will be null.
*/
@throws(classOf[Throwable])
def onComplete(failure: Throwable, success: T): Unit
}
/**
* Callback for the Future.recover operation that conditionally turns failures into successes.
*
* SAM (Single Abstract Method) class
*
* Java API
*/
abstract class Recover[+T] extends japi.RecoverBridge[T] {
protected final override def internal(result: Throwable): T = recover(result)
/**
* This method will be invoked once when/if the Future this recover callback is registered on
* becomes completed with a failure.
*
* @return a successful value for the passed in failure
* @throws the passed in failure to propagate it.
*
* Java API
*/
@throws(classOf[Throwable])
def recover(failure: Throwable): T
}
/**
* Java API (not recommended):
* Callback for the Future.filter operation that creates a new Future which will
* conditionally contain the success of another Future.
*
* Unfortunately it is not possible to express the type of a Scala filter in
* Java: Function1[T, Boolean], where “Boolean” is the primitive type. It is
* possible to use `Future.filter` by constructing such a function indirectly:
*
* {{{
* import static akka.dispatch.Filter.filterOf;
* Future f = ...;
* f.filter(filterOf(new Function() {
* @Override
* public Boolean apply(String s) {
* ...
* }
* }));
* }}}
*
* However, `Future.filter` exists mainly to support Scala’s for-comprehensions,
* thus Java users should prefer `Future.map`, translating non-matching values
* to failure cases.
*/
object Filter {
def filterOf[T](f: akka.japi.Function[T, java.lang.Boolean]): (T ⇒ Boolean) =
new Function1[T, Boolean] { def apply(result: T): Boolean = f(result).booleanValue() }
}
/**
* Callback for the Future.foreach operation that will be invoked if the Future that this callback
* is registered on becomes completed with a success. This method is essentially the same operation
* as onSuccess.
*
* SAM (Single Abstract Method) class
* Java API
*/
abstract class Foreach[-T] extends japi.UnitFunctionBridge[T] {
override final def internal(t: T): Unit = each(t)
/**
* This method will be invoked once when/if a Future that this callback is registered on
* becomes successfully completed
*/
@throws(classOf[Throwable])
def each(result: T): Unit
}
/**
* Callback for the Future.map and Future.flatMap operations that will be invoked
* if the Future that this callback is registered on becomes completed with a success.
* This callback is the equivalent of an akka.japi.Function
*
* Override "apply" normally, or "checkedApply" if you need to throw checked exceptions.
*
* SAM (Single Abstract Method) class
*
* Java API
*/
abstract class Mapper[-T, +R] extends scala.runtime.AbstractFunction1[T, R] {
/**
* Override this method to perform the map operation, by default delegates to "checkedApply"
* which by default throws an UnsupportedOperationException.
*/
def apply(parameter: T): R = checkedApply(parameter)
/**
* Override this method if you need to throw checked exceptions
*
* @throws UnsupportedOperation by default
*/
@throws(classOf[Throwable])
def checkedApply(parameter: T): R = throw new UnsupportedOperationException("Mapper.checkedApply has not been implemented")
}