spark.deploy.LocalSparkCluster.scala Maven / Gradle / Ivy
The newest version!
package spark.deploy
import akka.actor.{ActorRef, Props, Actor, ActorSystem, Terminated}
import spark.deploy.worker.Worker
import spark.deploy.master.Master
import spark.util.AkkaUtils
import spark.{Logging, Utils}
import scala.collection.mutable.ArrayBuffer
/**
* Testing class that creates a Spark standalone process in-cluster (that is, running the
* spark.deploy.master.Master and spark.deploy.worker.Workers in the same JVMs). Executors launched
* by the Workers still run in separate JVMs. This can be used to test distributed operation and
* fault recovery without spinning up a lot of processes.
*/
private[spark]
class LocalSparkCluster(numWorkers: Int, coresPerWorker: Int, memoryPerWorker: Int) extends Logging {
private val localIpAddress = Utils.localIpAddress
private val masterActorSystems = ArrayBuffer[ActorSystem]()
private val workerActorSystems = ArrayBuffer[ActorSystem]()
def start(): String = {
logInfo("Starting a local Spark cluster with " + numWorkers + " workers.")
/* Start the Master */
val (masterSystem, masterPort) = Master.startSystemAndActor(localIpAddress, 0, 0)
masterActorSystems += masterSystem
val masterUrl = "spark://" + localIpAddress + ":" + masterPort
/* Start the Workers */
for (workerNum <- 1 to numWorkers) {
val (workerSystem, _) = Worker.startSystemAndActor(localIpAddress, 0, 0, coresPerWorker,
memoryPerWorker, masterUrl, null, Some(workerNum))
workerActorSystems += workerSystem
}
return masterUrl
}
def stop() {
logInfo("Shutting down local Spark cluster.")
// Stop the workers before the master so they don't get upset that it disconnected
workerActorSystems.foreach(_.shutdown())
workerActorSystems.foreach(_.awaitTermination())
masterActorSystems.foreach(_.shutdown())
masterActorSystems.foreach(_.awaitTermination())
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy