spark.rdd.SampledRDD.scala Maven / Gradle / Ivy
The newest version!
package spark.rdd
import java.util.Random
import cern.jet.random.Poisson
import cern.jet.random.engine.DRand
import spark.{RDD, Partition, TaskContext}
private[spark]
class SampledRDDPartition(val prev: Partition, val seed: Int) extends Partition with Serializable {
override val index: Int = prev.index
}
class SampledRDD[T: ClassManifest](
prev: RDD[T],
withReplacement: Boolean,
frac: Double,
seed: Int)
extends RDD[T](prev) {
override def getPartitions: Array[Partition] = {
val rg = new Random(seed)
firstParent[T].partitions.map(x => new SampledRDDPartition(x, rg.nextInt))
}
override def getPreferredLocations(split: Partition): Seq[String] =
firstParent[T].preferredLocations(split.asInstanceOf[SampledRDDPartition].prev)
override def compute(splitIn: Partition, context: TaskContext): Iterator[T] = {
val split = splitIn.asInstanceOf[SampledRDDPartition]
if (withReplacement) {
// For large datasets, the expected number of occurrences of each element in a sample with
// replacement is Poisson(frac). We use that to get a count for each element.
val poisson = new Poisson(frac, new DRand(split.seed))
firstParent[T].iterator(split.prev, context).flatMap { element =>
val count = poisson.nextInt()
if (count == 0) {
Iterator.empty // Avoid object allocation when we return 0 items, which is quite often
} else {
Iterator.fill(count)(element)
}
}
} else { // Sampling without replacement
val rand = new Random(split.seed)
firstParent[T].iterator(split.prev, context).filter(x => (rand.nextDouble <= frac))
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy