spark.Partitioner.scala Maven / Gradle / Ivy
package spark
/**
* An object that defines how the elements in a key-value pair RDD are partitioned by key.
* Maps each key to a partition ID, from 0 to `numPartitions - 1`.
*/
abstract class Partitioner extends Serializable {
def numPartitions: Int
def getPartition(key: Any): Int
}
object Partitioner {
/**
* Choose a partitioner to use for a cogroup-like operation between a number of RDDs.
*
* If any of the RDDs already has a partitioner, choose that one.
*
* Otherwise, we use a default HashPartitioner. For the number of partitions, if
* spark.default.parallelism is set, then we'll use the value from SparkContext
* defaultParallelism, otherwise we'll use the max number of upstream partitions.
*
* Unless spark.default.parallelism is set, He number of partitions will be the
* same as the number of partitions in the largest upstream RDD, as this should
* be least likely to cause out-of-memory errors.
*
* We use two method parameters (rdd, others) to enforce callers passing at least 1 RDD.
*/
def defaultPartitioner(rdd: RDD[_], others: RDD[_]*): Partitioner = {
val bySize = (Seq(rdd) ++ others).sortBy(_.partitions.size).reverse
for (r <- bySize if r.partitioner != None) {
return r.partitioner.get
}
if (System.getProperty("spark.default.parallelism") != null) {
return new HashPartitioner(rdd.context.defaultParallelism)
} else {
return new HashPartitioner(bySize.head.partitions.size)
}
}
}
/**
* A [[spark.Partitioner]] that implements hash-based partitioning using Java's `Object.hashCode`.
*
* Java arrays have hashCodes that are based on the arrays' identities rather than their contents,
* so attempting to partition an RDD[Array[_]] or RDD[(Array[_], _)] using a HashPartitioner will
* produce an unexpected or incorrect result.
*/
class HashPartitioner(partitions: Int) extends Partitioner {
def numPartitions = partitions
def getPartition(key: Any): Int = {
if (key == null) {
return 0
} else {
val mod = key.hashCode % partitions
if (mod < 0) {
mod + partitions
} else {
mod // Guard against negative hash codes
}
}
}
override def equals(other: Any): Boolean = other match {
case h: HashPartitioner =>
h.numPartitions == numPartitions
case _ =>
false
}
}
/**
* A [[spark.Partitioner]] that partitions sortable records by range into roughly equal ranges.
* Determines the ranges by sampling the RDD passed in.
*/
class RangePartitioner[K <% Ordered[K]: ClassManifest, V](
partitions: Int,
@transient rdd: RDD[(K,V)],
private val ascending: Boolean = true)
extends Partitioner {
// An array of upper bounds for the first (partitions - 1) partitions
private val rangeBounds: Array[K] = {
if (partitions == 1) {
Array()
} else {
val rddSize = rdd.count()
val maxSampleSize = partitions * 20.0
val frac = math.min(maxSampleSize / math.max(rddSize, 1), 1.0)
val rddSample = rdd.sample(false, frac, 1).map(_._1).collect().sortWith(_ < _)
if (rddSample.length == 0) {
Array()
} else {
val bounds = new Array[K](partitions - 1)
for (i <- 0 until partitions - 1) {
val index = (rddSample.length - 1) * (i + 1) / partitions
bounds(i) = rddSample(index)
}
bounds
}
}
}
def numPartitions = partitions
def getPartition(key: Any): Int = {
// TODO: Use a binary search here if number of partitions is large
val k = key.asInstanceOf[K]
var partition = 0
while (partition < rangeBounds.length && k > rangeBounds(partition)) {
partition += 1
}
if (ascending) {
partition
} else {
rangeBounds.length - partition
}
}
override def equals(other: Any): Boolean = other match {
case r: RangePartitioner[_,_] =>
r.rangeBounds.sameElements(rangeBounds) && r.ascending == ascending
case _ =>
false
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy