spark.SparkEnv.scala Maven / Gradle / Ivy
package spark
import collection.mutable
import serializer.Serializer
import akka.actor.{Actor, ActorRef, Props, ActorSystemImpl, ActorSystem}
import akka.remote.RemoteActorRefProvider
import serializer.Serializer
import spark.broadcast.BroadcastManager
import spark.storage.BlockManager
import spark.storage.BlockManagerMaster
import spark.network.ConnectionManager
import spark.util.AkkaUtils
import spark.api.python.PythonWorkerFactory
/**
* Holds all the runtime environment objects for a running Spark instance (either master or worker),
* including the serializer, Akka actor system, block manager, map output tracker, etc. Currently
* Spark code finds the SparkEnv through a thread-local variable, so each thread that accesses these
* objects needs to have the right SparkEnv set. You can get the current environment with
* SparkEnv.get (e.g. after creating a SparkContext) and set it with SparkEnv.set.
*/
class SparkEnv (
val executorId: String,
val actorSystem: ActorSystem,
val serializer: Serializer,
val closureSerializer: Serializer,
val cacheManager: CacheManager,
val mapOutputTracker: MapOutputTracker,
val shuffleFetcher: ShuffleFetcher,
val broadcastManager: BroadcastManager,
val blockManager: BlockManager,
val connectionManager: ConnectionManager,
val httpFileServer: HttpFileServer,
val sparkFilesDir: String
) {
private val pythonWorkers = mutable.HashMap[(String, Map[String, String]), PythonWorkerFactory]()
def stop() {
pythonWorkers.foreach { case(key, worker) => worker.stop() }
httpFileServer.stop()
mapOutputTracker.stop()
shuffleFetcher.stop()
broadcastManager.stop()
blockManager.stop()
blockManager.master.stop()
actorSystem.shutdown()
// Unfortunately Akka's awaitTermination doesn't actually wait for the Netty server to shut
// down, but let's call it anyway in case it gets fixed in a later release
actorSystem.awaitTermination()
}
def createPythonWorker(pythonExec: String, envVars: Map[String, String]): java.net.Socket = {
synchronized {
val key = (pythonExec, envVars)
pythonWorkers.getOrElseUpdate(key, new PythonWorkerFactory(pythonExec, envVars)).create()
}
}
}
object SparkEnv extends Logging {
private val env = new ThreadLocal[SparkEnv]
def set(e: SparkEnv) {
env.set(e)
}
def get: SparkEnv = {
env.get()
}
def createFromSystemProperties(
executorId: String,
hostname: String,
port: Int,
isDriver: Boolean,
isLocal: Boolean): SparkEnv = {
val (actorSystem, boundPort) = AkkaUtils.createActorSystem("spark", hostname, port)
// Bit of a hack: If this is the driver and our port was 0 (meaning bind to any free port),
// figure out which port number Akka actually bound to and set spark.driver.port to it.
if (isDriver && port == 0) {
System.setProperty("spark.driver.port", boundPort.toString)
}
val classLoader = Thread.currentThread.getContextClassLoader
// Create an instance of the class named by the given Java system property, or by
// defaultClassName if the property is not set, and return it as a T
def instantiateClass[T](propertyName: String, defaultClassName: String): T = {
val name = System.getProperty(propertyName, defaultClassName)
Class.forName(name, true, classLoader).newInstance().asInstanceOf[T]
}
val serializer = instantiateClass[Serializer]("spark.serializer", "spark.JavaSerializer")
def registerOrLookup(name: String, newActor: => Actor): ActorRef = {
if (isDriver) {
logInfo("Registering " + name)
actorSystem.actorOf(Props(newActor), name = name)
} else {
val driverIp: String = System.getProperty("spark.driver.host", "localhost")
val driverPort: Int = System.getProperty("spark.driver.port", "7077").toInt
val url = "akka://spark@%s:%s/user/%s".format(driverIp, driverPort, name)
logInfo("Connecting to " + name + ": " + url)
actorSystem.actorFor(url)
}
}
val blockManagerMaster = new BlockManagerMaster(registerOrLookup(
"BlockManagerMaster",
new spark.storage.BlockManagerMasterActor(isLocal)))
val blockManager = new BlockManager(executorId, actorSystem, blockManagerMaster, serializer)
val connectionManager = blockManager.connectionManager
val broadcastManager = new BroadcastManager(isDriver)
val closureSerializer = instantiateClass[Serializer](
"spark.closure.serializer", "spark.JavaSerializer")
val cacheManager = new CacheManager(blockManager)
// Have to assign trackerActor after initialization as MapOutputTrackerActor
// requires the MapOutputTracker itself
val mapOutputTracker = new MapOutputTracker()
mapOutputTracker.trackerActor = registerOrLookup(
"MapOutputTracker",
new MapOutputTrackerActor(mapOutputTracker))
val shuffleFetcher = instantiateClass[ShuffleFetcher](
"spark.shuffle.fetcher", "spark.BlockStoreShuffleFetcher")
val httpFileServer = new HttpFileServer()
httpFileServer.initialize()
System.setProperty("spark.fileserver.uri", httpFileServer.serverUri)
// Set the sparkFiles directory, used when downloading dependencies. In local mode,
// this is a temporary directory; in distributed mode, this is the executor's current working
// directory.
val sparkFilesDir: String = if (isDriver) {
Utils.createTempDir().getAbsolutePath
} else {
"."
}
// Warn about deprecated spark.cache.class property
if (System.getProperty("spark.cache.class") != null) {
logWarning("The spark.cache.class property is no longer being used! Specify storage " +
"levels using the RDD.persist() method instead.")
}
new SparkEnv(
executorId,
actorSystem,
serializer,
closureSerializer,
cacheManager,
mapOutputTracker,
shuffleFetcher,
broadcastManager,
blockManager,
connectionManager,
httpFileServer,
sparkFilesDir)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy