spark.api.java.JavaRDD.scala Maven / Gradle / Ivy
package spark.api.java
import spark._
import spark.api.java.function.{Function => JFunction}
import spark.storage.StorageLevel
class JavaRDD[T](val rdd: RDD[T])(implicit val classManifest: ClassManifest[T]) extends
JavaRDDLike[T, JavaRDD[T]] {
override def wrapRDD(rdd: RDD[T]): JavaRDD[T] = JavaRDD.fromRDD(rdd)
// Common RDD functions
/** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
def cache(): JavaRDD[T] = wrapRDD(rdd.cache())
/**
* Set this RDD's storage level to persist its values across operations after the first time
* it is computed. Can only be called once on each RDD.
*/
def persist(newLevel: StorageLevel): JavaRDD[T] = wrapRDD(rdd.persist(newLevel))
// Transformations (return a new RDD)
/**
* Return a new RDD containing the distinct elements in this RDD.
*/
def distinct(): JavaRDD[T] = wrapRDD(rdd.distinct())
/**
* Return a new RDD containing the distinct elements in this RDD.
*/
def distinct(numPartitions: Int): JavaRDD[T] = wrapRDD(rdd.distinct(numPartitions))
/**
* Return a new RDD containing only the elements that satisfy a predicate.
*/
def filter(f: JFunction[T, java.lang.Boolean]): JavaRDD[T] =
wrapRDD(rdd.filter((x => f(x).booleanValue())))
/**
* Return a new RDD that is reduced into `numPartitions` partitions.
*/
def coalesce(numPartitions: Int): JavaRDD[T] = rdd.coalesce(numPartitions)
/**
* Return a new RDD that is reduced into `numPartitions` partitions.
*/
def coalesce(numPartitions: Int, shuffle: Boolean): JavaRDD[T] =
rdd.coalesce(numPartitions, shuffle)
/**
* Return a sampled subset of this RDD.
*/
def sample(withReplacement: Boolean, fraction: Double, seed: Int): JavaRDD[T] =
wrapRDD(rdd.sample(withReplacement, fraction, seed))
/**
* Return the union of this RDD and another one. Any identical elements will appear multiple
* times (use `.distinct()` to eliminate them).
*/
def union(other: JavaRDD[T]): JavaRDD[T] = wrapRDD(rdd.union(other.rdd))
/**
* Return an RDD with the elements from `this` that are not in `other`.
*
* Uses `this` partitioner/partition size, because even if `other` is huge, the resulting
* RDD will be <= us.
*/
def subtract(other: JavaRDD[T]): JavaRDD[T] = wrapRDD(rdd.subtract(other))
/**
* Return an RDD with the elements from `this` that are not in `other`.
*/
def subtract(other: JavaRDD[T], numPartitions: Int): JavaRDD[T] =
wrapRDD(rdd.subtract(other, numPartitions))
/**
* Return an RDD with the elements from `this` that are not in `other`.
*/
def subtract(other: JavaRDD[T], p: Partitioner): JavaRDD[T] =
wrapRDD(rdd.subtract(other, p))
}
object JavaRDD {
implicit def fromRDD[T: ClassManifest](rdd: RDD[T]): JavaRDD[T] = new JavaRDD[T](rdd)
implicit def toRDD[T](rdd: JavaRDD[T]): RDD[T] = rdd.rdd
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy