spark.partial.CountEvaluator.scala Maven / Gradle / Ivy
package spark.partial
import cern.jet.stat.Probability
/**
* An ApproximateEvaluator for counts.
*
* TODO: There's currently a lot of shared code between this and GroupedCountEvaluator. It might
* be best to make this a special case of GroupedCountEvaluator with one group.
*/
private[spark] class CountEvaluator(totalOutputs: Int, confidence: Double)
extends ApproximateEvaluator[Long, BoundedDouble] {
var outputsMerged = 0
var sum: Long = 0
override def merge(outputId: Int, taskResult: Long) {
outputsMerged += 1
sum += taskResult
}
override def currentResult(): BoundedDouble = {
if (outputsMerged == totalOutputs) {
new BoundedDouble(sum, 1.0, sum, sum)
} else if (outputsMerged == 0) {
new BoundedDouble(0, 0.0, Double.NegativeInfinity, Double.PositiveInfinity)
} else {
val p = outputsMerged.toDouble / totalOutputs
val mean = (sum + 1 - p) / p
val variance = (sum + 1) * (1 - p) / (p * p)
val stdev = math.sqrt(variance)
val confFactor = Probability.normalInverse(1 - (1 - confidence) / 2)
val low = mean - confFactor * stdev
val high = mean + confFactor * stdev
new BoundedDouble(mean, confidence, low, high)
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy