spark.partial.GroupedCountEvaluator.scala Maven / Gradle / Ivy
package spark.partial
import java.util.{HashMap => JHashMap}
import java.util.{Map => JMap}
import scala.collection.Map
import scala.collection.mutable.HashMap
import scala.collection.JavaConversions.mapAsScalaMap
import cern.jet.stat.Probability
import it.unimi.dsi.fastutil.objects.{Object2LongOpenHashMap => OLMap}
/**
* An ApproximateEvaluator for counts by key. Returns a map of key to confidence interval.
*/
private[spark] class GroupedCountEvaluator[T](totalOutputs: Int, confidence: Double)
extends ApproximateEvaluator[OLMap[T], Map[T, BoundedDouble]] {
var outputsMerged = 0
var sums = new OLMap[T] // Sum of counts for each key
override def merge(outputId: Int, taskResult: OLMap[T]) {
outputsMerged += 1
val iter = taskResult.object2LongEntrySet.fastIterator()
while (iter.hasNext) {
val entry = iter.next()
sums.put(entry.getKey, sums.getLong(entry.getKey) + entry.getLongValue)
}
}
override def currentResult(): Map[T, BoundedDouble] = {
if (outputsMerged == totalOutputs) {
val result = new JHashMap[T, BoundedDouble](sums.size)
val iter = sums.object2LongEntrySet.fastIterator()
while (iter.hasNext) {
val entry = iter.next()
val sum = entry.getLongValue()
result(entry.getKey) = new BoundedDouble(sum, 1.0, sum, sum)
}
result
} else if (outputsMerged == 0) {
new HashMap[T, BoundedDouble]
} else {
val p = outputsMerged.toDouble / totalOutputs
val confFactor = Probability.normalInverse(1 - (1 - confidence) / 2)
val result = new JHashMap[T, BoundedDouble](sums.size)
val iter = sums.object2LongEntrySet.fastIterator()
while (iter.hasNext) {
val entry = iter.next()
val sum = entry.getLongValue
val mean = (sum + 1 - p) / p
val variance = (sum + 1) * (1 - p) / (p * p)
val stdev = math.sqrt(variance)
val low = mean - confFactor * stdev
val high = mean + confFactor * stdev
result(entry.getKey) = new BoundedDouble(mean, confidence, low, high)
}
result
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy