spark.partial.SumEvaluator.scala Maven / Gradle / Ivy
package spark.partial
import cern.jet.stat.Probability
import spark.util.StatCounter
/**
* An ApproximateEvaluator for sums. It estimates the mean and the cont and multiplies them
* together, then uses the formula for the variance of two independent random variables to get
* a variance for the result and compute a confidence interval.
*/
private[spark] class SumEvaluator(totalOutputs: Int, confidence: Double)
extends ApproximateEvaluator[StatCounter, BoundedDouble] {
var outputsMerged = 0
var counter = new StatCounter
override def merge(outputId: Int, taskResult: StatCounter) {
outputsMerged += 1
counter.merge(taskResult)
}
override def currentResult(): BoundedDouble = {
if (outputsMerged == totalOutputs) {
new BoundedDouble(counter.sum, 1.0, counter.sum, counter.sum)
} else if (outputsMerged == 0) {
new BoundedDouble(0, 0.0, Double.NegativeInfinity, Double.PositiveInfinity)
} else {
val p = outputsMerged.toDouble / totalOutputs
val meanEstimate = counter.mean
val meanVar = counter.sampleVariance / counter.count
val countEstimate = (counter.count + 1 - p) / p
val countVar = (counter.count + 1) * (1 - p) / (p * p)
val sumEstimate = meanEstimate * countEstimate
val sumVar = (meanEstimate * meanEstimate * countVar) +
(countEstimate * countEstimate * meanVar) +
(meanVar * countVar)
val sumStdev = math.sqrt(sumVar)
val confFactor = {
if (counter.count > 100) {
Probability.normalInverse(1 - (1 - confidence) / 2)
} else {
Probability.studentTInverse(1 - confidence, (counter.count - 1).toInt)
}
}
val low = sumEstimate - confFactor * sumStdev
val high = sumEstimate + confFactor * sumStdev
new BoundedDouble(sumEstimate, confidence, low, high)
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy