All Downloads are FREE. Search and download functionalities are using the official Maven repository.

spark.scheduler.Task.scala Maven / Gradle / Ivy

package spark.scheduler

import spark.serializer.SerializerInstance
import java.io.{DataInputStream, DataOutputStream}
import java.nio.ByteBuffer
import it.unimi.dsi.fastutil.io.FastByteArrayOutputStream
import spark.util.ByteBufferInputStream
import scala.collection.mutable.HashMap
import spark.executor.TaskMetrics

/**
 * A task to execute on a worker node.
 */
private[spark] abstract class Task[T](val stageId: Int) extends Serializable {
  def run(attemptId: Long): T
  def preferredLocations: Seq[String] = Nil

  var generation: Long = -1   // Map output tracker generation. Will be set by TaskScheduler.

  var metrics: Option[TaskMetrics] = None

}

/**
 * Handles transmission of tasks and their dependencies, because this can be slightly tricky. We
 * need to send the list of JARs and files added to the SparkContext with each task to ensure that
 * worker nodes find out about it, but we can't make it part of the Task because the user's code in
 * the task might depend on one of the JARs. Thus we serialize each task as multiple objects, by
 * first writing out its dependencies.
 */
private[spark] object Task {
  /**
   * Serialize a task and the current app dependencies (files and JARs added to the SparkContext)
   */
  def serializeWithDependencies(
      task: Task[_],
      currentFiles: HashMap[String, Long],
      currentJars: HashMap[String, Long],
      serializer: SerializerInstance)
    : ByteBuffer = {

    val out = new FastByteArrayOutputStream(4096)
    val dataOut = new DataOutputStream(out)

    // Write currentFiles
    dataOut.writeInt(currentFiles.size)
    for ((name, timestamp) <- currentFiles) {
      dataOut.writeUTF(name)
      dataOut.writeLong(timestamp)
    }

    // Write currentJars
    dataOut.writeInt(currentJars.size)
    for ((name, timestamp) <- currentJars) {
      dataOut.writeUTF(name)
      dataOut.writeLong(timestamp)
    }

    // Write the task itself and finish
    dataOut.flush()
    val taskBytes = serializer.serialize(task).array()
    out.write(taskBytes)
    out.trim()
    ByteBuffer.wrap(out.array)
  }

  /**
   * Deserialize the list of dependencies in a task serialized with serializeWithDependencies,
   * and return the task itself as a serialized ByteBuffer. The caller can then update its
   * ClassLoaders and deserialize the task.
   *
   * @return (taskFiles, taskJars, taskBytes)
   */
  def deserializeWithDependencies(serializedTask: ByteBuffer)
    : (HashMap[String, Long], HashMap[String, Long], ByteBuffer) = {

    val in = new ByteBufferInputStream(serializedTask)
    val dataIn = new DataInputStream(in)

    // Read task's files
    val taskFiles = new HashMap[String, Long]()
    val numFiles = dataIn.readInt()
    for (i <- 0 until numFiles) {
      taskFiles(dataIn.readUTF()) = dataIn.readLong()
    }

    // Read task's JARs
    val taskJars = new HashMap[String, Long]()
    val numJars = dataIn.readInt()
    for (i <- 0 until numJars) {
      taskJars(dataIn.readUTF()) = dataIn.readLong()
    }

    // Create a sub-buffer for the rest of the data, which is the serialized Task object
    val subBuffer = serializedTask.slice()  // ByteBufferInputStream will have read just up to task
    (taskFiles, taskJars, subBuffer)
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy