spark.util.StatCounter.scala Maven / Gradle / Ivy
package spark.util
/**
* A class for tracking the statistics of a set of numbers (count, mean and variance) in a
* numerically robust way. Includes support for merging two StatCounters. Based on
* [[http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance Welford and Chan's algorithms for running variance]].
*
* @constructor Initialize the StatCounter with the given values.
*/
class StatCounter(values: TraversableOnce[Double]) extends Serializable {
private var n: Long = 0 // Running count of our values
private var mu: Double = 0 // Running mean of our values
private var m2: Double = 0 // Running variance numerator (sum of (x - mean)^2)
merge(values)
/** Initialize the StatCounter with no values. */
def this() = this(Nil)
/** Add a value into this StatCounter, updating the internal statistics. */
def merge(value: Double): StatCounter = {
val delta = value - mu
n += 1
mu += delta / n
m2 += delta * (value - mu)
this
}
/** Add multiple values into this StatCounter, updating the internal statistics. */
def merge(values: TraversableOnce[Double]): StatCounter = {
values.foreach(v => merge(v))
this
}
/** Merge another StatCounter into this one, adding up the internal statistics. */
def merge(other: StatCounter): StatCounter = {
if (other == this) {
merge(other.copy()) // Avoid overwriting fields in a weird order
} else {
if (n == 0) {
mu = other.mu
m2 = other.m2
n = other.n
} else if (other.n != 0) {
val delta = other.mu - mu
if (other.n * 10 < n) {
mu = mu + (delta * other.n) / (n + other.n)
} else if (n * 10 < other.n) {
mu = other.mu - (delta * n) / (n + other.n)
} else {
mu = (mu * n + other.mu * other.n) / (n + other.n)
}
m2 += other.m2 + (delta * delta * n * other.n) / (n + other.n)
n += other.n
}
this
}
}
/** Clone this StatCounter */
def copy(): StatCounter = {
val other = new StatCounter
other.n = n
other.mu = mu
other.m2 = m2
other
}
def count: Long = n
def mean: Double = mu
def sum: Double = n * mu
/** Return the variance of the values. */
def variance: Double = {
if (n == 0)
Double.NaN
else
m2 / n
}
/**
* Return the sample variance, which corrects for bias in estimating the variance by dividing
* by N-1 instead of N.
*/
def sampleVariance: Double = {
if (n <= 1)
Double.NaN
else
m2 / (n - 1)
}
/** Return the standard deviation of the values. */
def stdev: Double = math.sqrt(variance)
/**
* Return the sample standard deviation of the values, which corrects for bias in estimating the
* variance by dividing by N-1 instead of N.
*/
def sampleStdev: Double = math.sqrt(sampleVariance)
override def toString: String = {
"(count: %d, mean: %f, stdev: %f)".format(count, mean, stdev)
}
}
object StatCounter {
/** Build a StatCounter from a list of values. */
def apply(values: TraversableOnce[Double]) = new StatCounter(values)
/** Build a StatCounter from a list of values passed as variable-length arguments. */
def apply(values: Double*) = new StatCounter(values)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy