spark.examples.LocalALS.scala Maven / Gradle / Ivy
package spark.examples
import scala.math.sqrt
import cern.jet.math._
import cern.colt.matrix._
import cern.colt.matrix.linalg._
/**
* Alternating least squares matrix factorization.
*/
object LocalALS {
// Parameters set through command line arguments
var M = 0 // Number of movies
var U = 0 // Number of users
var F = 0 // Number of features
var ITERATIONS = 0
val LAMBDA = 0.01 // Regularization coefficient
// Some COLT objects
val factory2D = DoubleFactory2D.dense
val factory1D = DoubleFactory1D.dense
val algebra = Algebra.DEFAULT
val blas = SeqBlas.seqBlas
def generateR(): DoubleMatrix2D = {
val mh = factory2D.random(M, F)
val uh = factory2D.random(U, F)
return algebra.mult(mh, algebra.transpose(uh))
}
def rmse(targetR: DoubleMatrix2D, ms: Array[DoubleMatrix1D],
us: Array[DoubleMatrix1D]): Double =
{
val r = factory2D.make(M, U)
for (i <- 0 until M; j <- 0 until U) {
r.set(i, j, blas.ddot(ms(i), us(j)))
}
//println("R: " + r)
blas.daxpy(-1, targetR, r)
val sumSqs = r.aggregate(Functions.plus, Functions.square)
return sqrt(sumSqs / (M * U))
}
def updateMovie(i: Int, m: DoubleMatrix1D, us: Array[DoubleMatrix1D],
R: DoubleMatrix2D) : DoubleMatrix1D =
{
val XtX = factory2D.make(F, F)
val Xty = factory1D.make(F)
// For each user that rated the movie
for (j <- 0 until U) {
val u = us(j)
// Add u * u^t to XtX
blas.dger(1, u, u, XtX)
// Add u * rating to Xty
blas.daxpy(R.get(i, j), u, Xty)
}
// Add regularization coefs to diagonal terms
for (d <- 0 until F) {
XtX.set(d, d, XtX.get(d, d) + LAMBDA * U)
}
// Solve it with Cholesky
val ch = new CholeskyDecomposition(XtX)
val Xty2D = factory2D.make(Xty.toArray, F)
val solved2D = ch.solve(Xty2D)
return solved2D.viewColumn(0)
}
def updateUser(j: Int, u: DoubleMatrix1D, ms: Array[DoubleMatrix1D],
R: DoubleMatrix2D) : DoubleMatrix1D =
{
val XtX = factory2D.make(F, F)
val Xty = factory1D.make(F)
// For each movie that the user rated
for (i <- 0 until M) {
val m = ms(i)
// Add m * m^t to XtX
blas.dger(1, m, m, XtX)
// Add m * rating to Xty
blas.daxpy(R.get(i, j), m, Xty)
}
// Add regularization coefs to diagonal terms
for (d <- 0 until F) {
XtX.set(d, d, XtX.get(d, d) + LAMBDA * M)
}
// Solve it with Cholesky
val ch = new CholeskyDecomposition(XtX)
val Xty2D = factory2D.make(Xty.toArray, F)
val solved2D = ch.solve(Xty2D)
return solved2D.viewColumn(0)
}
def main(args: Array[String]) {
args match {
case Array(m, u, f, iters) => {
M = m.toInt
U = u.toInt
F = f.toInt
ITERATIONS = iters.toInt
}
case _ => {
System.err.println("Usage: LocalALS ")
System.exit(1)
}
}
printf("Running with M=%d, U=%d, F=%d, iters=%d\n", M, U, F, ITERATIONS);
val R = generateR()
// Initialize m and u randomly
var ms = Array.fill(M)(factory1D.random(F))
var us = Array.fill(U)(factory1D.random(F))
// Iteratively update movies then users
for (iter <- 1 to ITERATIONS) {
println("Iteration " + iter + ":")
ms = (0 until M).map(i => updateMovie(i, ms(i), us, R)).toArray
us = (0 until U).map(j => updateUser(j, us(j), ms, R)).toArray
println("RMSE = " + rmse(R, ms, us))
println()
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy