
scalaz.Foldable.scala Maven / Gradle / Ivy
The newest version!
package org.specs2.internal.scalaz
////
/**
*
*/
////
trait Foldable[F[_]] { self =>
////
/** Map each element of the structure to a [[scalaz.Monoid]], and combine the results. */
def foldMap[A,B](fa: F[A])(f: A => B)(implicit F: Monoid[B]): B
/**Right-associative fold of a structure. */
def foldRight[A, B](fa: F[A], z: => B)(f: (A, => B) => B): B
/**The composition of Foldables `F` and `G`, `[x]F[G[x]]`, is a Foldable */
def compose[G[_]](implicit G0: Foldable[G]): Foldable[({type λ[α] = F[G[α]]})#λ] = new CompositionFoldable[F, G] {
implicit def F = self
implicit def G = G0
}
/**The product of Foldables `F` and `G`, `[x](F[x], G[x]])`, is a Foldable */
def product[G[_]](implicit G0: Foldable[G]): Foldable[({type λ[α] = (F[α], G[α])})#λ] = new ProductFoldable[F, G] {
implicit def F = self
implicit def G = G0
}
// /**Right-associative fold of a structure. */
// def foldRight[A, B](fa: F[A], z: => B)(f: (A, => B) => B): B =
// foldMap(fa)((a: A) => (Endo.endo(f.curried(a)(_: B)))) apply z
/**Left-associative fold of a structure. */
def foldLeft[A, B](fa: F[A], z: B)(f: (B, A) => B): B = {
import Dual._, Endo._, syntax.std.all._
foldMap(fa)((a: A) => Dual(Endo.endo(f.flip.curried(a))))(dualMonoid) apply (z)
}
/**Right-associative, monadic fold of a structure. */
def foldRightM[G[_], A, B](fa: F[A], z: => B)(f: (A, => B) => G[B])(implicit M: Monad[G]): G[B] =
foldLeft[A, B => G[B]](fa, M.point(_))((b, a) => w => M.bind(f(a, w))(b))(z)
/**Left-associative, monadic fold of a structure. */
def foldLeftM[G[_], A, B](fa: F[A], z: B)(f: (B, A) => G[B])(implicit M: Monad[G]): G[B] =
foldRight[A, B => G[B]](fa, M.point(_))((a, b) => w => M.bind(f(w, a))(b))(z)
/** Alias for `foldMap` where `F` is summed with `None` to form a
* Monoid. */
def foldMap1[A,B](fa: F[A])(f: A => B)(implicit F: Semigroup[B]): Option[B] = {
import std.option._
foldMap(fa)(a => some(f(a)))
}
/** Combine the elements of a structure using a monoid. */
def fold[M: Monoid](t: F[M]): M = foldMap[M, M](t)(x => x)
/** Strict traversal in an applicative functor `M` that ignores the result of `f`. */
def traverse_[M[_], A, B](fa: F[A])(f: A => M[B])(implicit a: Applicative[M]): M[Unit] =
foldLeft(fa, a.pure(()))((x, y) => a.ap(f(y))(a.map(x)(_ => _ => ())))
/** Strict sequencing in an applicative functor `M` that ignores the value in `fa`. */
def sequence_[M[_], A, B](fa: F[M[A]])(implicit a: Applicative[M]): M[Unit] =
traverse_(fa)(x => x)
/**Curried version of `foldRight` */
final def foldr[A, B](fa: F[A], z: => B)(f: A => (=> B) => B): B = foldRight(fa, z)((a, b) => f(a)(b))
/**Curred version of `foldLeft` */
final def foldl[A, B](fa: F[A], z: B)(f: B => A => B) = foldLeft(fa, z)((b, a) => f(b)(a))
/**Curried version of `foldRightM` */
final def foldrM[G[_], A, B](fa: F[A], z: => B)(f: A => ( => B) => G[B])(implicit M: Monad[G]): G[B] =
foldRightM(fa, z)((a, b) => f(a)(b))
/**Curried version of `foldLeftM` */
final def foldlM[G[_], A, B](fa: F[A], z: => B)(f: B => A => G[B])(implicit M: Monad[G]): G[B] =
foldLeftM(fa, z)((b, a) => f(b)(a))
/** Unbiased sum of monoidal values. */
def foldMapIdentity[A,B](fa: F[A])(implicit F: Monoid[A]): A = foldMap(fa)(a => a)
def foldr1[A](fa: F[A])(f: (A, => A) => A): Option[A] = foldRight(fa, None: Option[A])((a, o) => o.map(f(a, _)) orElse Some(a))
def foldl1[A](fa: F[A])(f: (A, A) => A): Option[A] = foldLeft(fa, None: Option[A])((o, a) => o.map(f(a, _)) orElse Some(a))
def toList[A](fa: F[A]): List[A] = foldLeft(fa, scala.List[A]())((t, h) => h :: t).reverse
def toIndexedSeq[A](fa: F[A]): IndexedSeq[A] = foldLeft(fa, IndexedSeq[A]())(_ :+ _)
def toSet[A](fa: F[A]): Set[A] = foldLeft(fa, Set[A]())(_ + _)
def toStream[A](fa: F[A]): Stream[A] = foldRight[A, Stream[A]](fa, Stream.empty)(Stream.cons(_, _))
/** Whether all `A`s in `fa` yield true from `p`. */
def all[A](fa: F[A])(p: A => Boolean): Boolean = foldRight(fa, true)(p(_) && _)
/** `all` with monadic traversal. */
def allM[G[_], A](fa: F[A])(p: A => G[Boolean])(implicit G: Monad[G]): G[Boolean] =
foldRight(fa, G.point(true))((a, b) => G.bind(p(a))(q => if(q) b else G.point(false)))
/** Whether any `A`s in `fa` yield true from `p`. */
def any[A](fa: F[A])(p: A => Boolean): Boolean = foldRight(fa, false)(p(_) || _)
/** `any` with monadic traversal. */
def anyM[G[_], A](fa: F[A])(p: A => G[Boolean])(implicit G: Monad[G]): G[Boolean] =
foldRight(fa, G.point(false))((a, b) => G.bind(p(a))(q => if(q) G.point(true) else b))
/** Deforested alias for `toStream(fa).size`. */
def count[A](fa: F[A]): Int = foldLeft(fa, 0)((b, _) => b + 1)
import Ordering.{GT, LT}
/** The greatest element of `fa`, or None if `fa` is empty. */
def maximum[A: Order](fa: F[A]): Option[A] = foldl1(fa)((x, y) => if (Order[A].order(x, y) == GT) x else y)
/** The smallest element of `fa`, or None if `fa` is empty. */
def minimum[A: Order](fa: F[A]): Option[A] = foldl1(fa)((x, y) => if (Order[A].order(x, y) == LT) x else y)
def longDigits[A](fa: F[A])(implicit d: A <:< Digit): Long = foldLeft(fa, 0L)((n, a) => n * 10L + (a: Digit))
/** Deforested alias for `toStream(fa).isEmpty`. */
def empty[A](fa: F[A]): Boolean = all(fa)(_ => false)
/** Whether `a` is an element of `fa`. */
def element[A: Equal](fa: F[A], a: A): Boolean = any(fa)(Equal[A].equal(a, _))
/**
* Splits the elements into groups that alternatively satisfy and don't satisfy the predicate p.
*/
def splitWith[A](fa: F[A])(p: A => Boolean): List[List[A]] =
foldRight(fa, (List[List[A]](), None : Option[Boolean]))((a, b) => {
val pa = p(a)
(b match {
case (_, None) => List(List(a))
case (x, Some(q)) => if (pa == q) (a :: x.head) :: x.tail else List(a) :: x
}, Some(pa))
})._1
/**
* Selects groups of elements that satisfy p and discards others.
*/
def selectSplit[A](fa: F[A])(p: A => Boolean): List[List[A]] =
foldRight(fa, (List[List[A]](), false))((a, xb) => xb match {
case (x, b) => {
val pa = p(a)
(if (pa)
if (b)
(a :: x.head) :: x.tail else
List(a) :: x
else x, pa)
}
})._1
def collapse[X[_], A](x: F[A])(implicit F: Foldable[F], A: ApplicativePlus[X]): X[A] =
F.foldRight(x, A.empty[A])((a, b) => A.plus(A.point(a), b))
def collapse2[G[_], X[_], A](x: F[G[A]])(implicit
F: Foldable[F]
, G: Foldable[G]
, A: ApplicativePlus[X]): X[A] = {
implicit val Z = F compose G
Z collapse x
}
def collapse3[G[_], H[_], X[_], A](x: F[G[H[A]]])(implicit
F: Foldable[F]
, G: Foldable[G]
, H: Foldable[H]
, A: ApplicativePlus[X]): X[A] = {
implicit val Z = F compose G compose H
Z.collapse(x)
}
def collapse4[G[_], H[_], I[_], X[_], A](x: F[G[H[I[A]]]])(implicit
F: Foldable[F]
, G: Foldable[G]
, H: Foldable[H]
, I: Foldable[I]
, A: ApplicativePlus[X]): X[A] = {
implicit val Z = F compose G compose H compose I
Z.collapse(x)
}
def collapse5[G[_], H[_], I[_], J[_], X[_], A](x: F[G[H[I[J[A]]]]])(implicit
F: Foldable[F]
, G: Foldable[G]
, H: Foldable[H]
, I: Foldable[I]
, J: Foldable[J]
, A: ApplicativePlus[X]): X[A] = {
implicit val Z = F compose G compose H compose I compose J
Z.collapse(x)
}
def collapse6[G[_], H[_], I[_], J[_], K[_], X[_], A](x: F[G[H[I[J[K[A]]]]]])(implicit
F: Foldable[F]
, G: Foldable[G]
, H: Foldable[H]
, I: Foldable[I]
, J: Foldable[J]
, K: Foldable[K]
, A: ApplicativePlus[X]): X[A] = {
implicit val Z = F compose G compose H compose I compose J compose K
Z.collapse(x)
}
def collapse7[G[_], H[_], I[_], J[_], K[_], L[_], X[_], A](x: F[G[H[I[J[K[L[A]]]]]]])(implicit
F: Foldable[F]
, G: Foldable[G]
, H: Foldable[H]
, I: Foldable[I]
, J: Foldable[J]
, K: Foldable[K]
, L: Foldable[L]
, A: ApplicativePlus[X]): X[A] = {
implicit val Z = F compose G compose H compose I compose J compose K compose L
Z.collapse(x)
}
////
val foldableSyntax = new org.specs2.internal.scalaz.syntax.FoldableSyntax[F] { def F = Foldable.this }
}
object Foldable {
@inline def apply[F[_]](implicit F: Foldable[F]): Foldable[F] = F
////
/**
* Template trait to define `Foldable` in terms of `foldMap`.
*
* Example:
* {{{
* new Foldable[Option] with Foldable.FromFoldMap[Option] {
* def foldMap[A, B](fa: Option[A])(f: (A) => B)(implicit F: Monoid[B]) = fa match {
* case Some(a) => f(a)
* case None => F.zero
* }
* }
* }}}
*/
trait FromFoldMap[F[_]] extends Foldable[F] {
override def foldRight[A, B](fa: F[A], z: => B)(f: (A, => B) => B) =
foldMap(fa)((a: A) => (Endo.endo(f(a, _: B)))) apply z
}
/**
* Template trait to define `Foldable` in terms of `foldr`
*
* Example:
* {{{
* new Foldable[Option] with Foldable.FromFoldr[Option] {
* def foldr[A, B](fa: Option[A], z: B)(f: (A) => (=> B) => B) = fa match {
* case Some(a) => f(a)(z)
* case None => z
* }
* }
* }}}
*/
trait FromFoldr[F[_]] extends Foldable[F] {
override def foldMap[A, B](fa: F[A])(f: (A) => B)(implicit F: Monoid[B]) =
foldr[A, B](fa, F.zero)( x => y => F.append(f(x), y))
}
////
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy