
scalaz.std.AnyVal.scala Maven / Gradle / Ivy
The newest version!
package org.specs2.internal.scalaz
package std
import org.specs2.internal.scalaz._
import Id._
trait AnyValInstances {
implicit val unitInstance: Group[Unit] with Enum[Unit] with Show[Unit] = new Group[Unit] with Enum[Unit] with Show[Unit] {
override def shows(f: Unit) = ().toString
def append(f1: Unit, f2: => Unit) = ()
def zero = ()
def inverse(f:Unit) = ()
def order(x: Unit, y: Unit) = Ordering.EQ
def succ(u: Unit) = ()
def pred(u: Unit) = ()
override def succn(a: Int, b: Unit) = ()
override def predn(a: Int, b: Unit) = ()
override def min = Some(())
override def max = Some(())
override def equalIsNatural: Boolean = true
}
implicit val nothingInstance: Semigroup[Nothing] with Show[Nothing] with Equal[Nothing] =
new Semigroup[Nothing] with Show[Nothing] with Enum[Nothing] {
override def shows(f: Nothing) = f.toString
def append(f1: Nothing, f2: => Nothing) = f1
def order(x: Nothing, y: Nothing) = Ordering.EQ
def succ(n: Nothing) = n
def pred(n: Nothing) = n
override def succn(a: Int, b: Nothing) = b
override def predn(a: Int, b: Nothing) = b
override def min = None
override def max = None
override def equalIsNatural: Boolean = true
}
implicit object booleanInstance extends Enum[Boolean] with Show[Boolean] {
override def shows(f: Boolean) = f.toString
def order(x: Boolean, y: Boolean) = if (x < y) Ordering.LT else if (x == y) Ordering.EQ else Ordering.GT
def succ(b: Boolean) = !b
def pred(b: Boolean) = !b
override def succn(n: Int, b: Boolean) = if(n % 2 == 0) b else !b
override def predn(n: Int, b: Boolean) = if(n % 2 == 0) b else !b
override def min = Some(false)
override def max = Some(true)
override def equalIsNatural: Boolean = true
object conjunction extends Monoid[Boolean] {
def append(f1: Boolean, f2: => Boolean) = f1 && f2
def zero: Boolean = true
}
object disjunction extends Monoid[Boolean] {
def append(f1: Boolean, f2: => Boolean) = f1 || f2
def zero = false
}
}
import Tags.{Conjunction, Disjunction}
implicit val booleanDisjunctionNewTypeInstance: Monoid[Boolean @@ Disjunction] with Enum[Boolean @@ Disjunction] = new Monoid[Boolean @@ Disjunction] with Enum[Boolean @@ Disjunction] {
def append(f1: Boolean @@ Disjunction, f2: => Boolean @@ Disjunction) = Disjunction(f1 || f2)
def zero: Boolean @@ Disjunction = Disjunction(false)
def order(a1: Boolean @@ Disjunction, a2: Boolean @@ Disjunction) = Order[Boolean].order(a1, a2)
def succ(b: Boolean @@ Disjunction) = Disjunction(Enum[Boolean].succ(b))
def pred(b: Boolean @@ Disjunction) = Disjunction(Enum[Boolean].pred(b))
override def succn(n: Int, b: Boolean @@ Disjunction) = Disjunction(Enum[Boolean].succn(n, b))
override def predn(n: Int, b: Boolean @@ Disjunction) = Disjunction(Enum[Boolean].predn(n, b))
override def min = Enum[Boolean].min map (Disjunction(_))
override def max = Enum[Boolean].max map (Disjunction(_))
}
implicit val booleanConjunctionNewTypeInstance: Monoid[Boolean @@ Conjunction] with Enum[Boolean @@ Conjunction] = new Monoid[Boolean @@ Conjunction] with Enum[Boolean @@ Conjunction] {
def append(f1: Boolean @@ Conjunction, f2: => Boolean @@ Conjunction) = Conjunction(f1 && f2)
def zero: Boolean @@ Conjunction = Conjunction(true)
def order(a1: Boolean @@ Conjunction, a2: Boolean @@ Conjunction) = Order[Boolean].order(a1, a2)
def succ(b: Boolean @@ Conjunction) = Conjunction(Enum[Boolean].succ(b))
def pred(b: Boolean @@ Conjunction) = Conjunction(Enum[Boolean].pred(b))
override def succn(n: Int, b: Boolean @@ Conjunction) = Conjunction(Enum[Boolean].succn(n, b))
override def predn(n: Int, b: Boolean @@ Conjunction) = Conjunction(Enum[Boolean].predn(n, b))
override def min = Enum[Boolean].min map (Conjunction(_))
override def max = Enum[Boolean].max map (Conjunction(_))
}
implicit val byteInstance: Monoid[Byte] with Enum[Byte] with Show[Byte] = new Monoid[Byte] with Enum[Byte] with Show[Byte] {
override def shows(f: Byte) = f.toString
def append(f1: Byte, f2: => Byte) = (f1 + f2).toByte
def zero: Byte = 0
def order(x: Byte, y: Byte) = if (x < y) Ordering.LT else if (x == y) Ordering.EQ else Ordering.GT
def succ(b: Byte) = (b + 1).toByte
def pred(b: Byte) = (b - 1).toByte
override def succn(a: Int, b: Byte) = (b + a).toByte
override def predn(a: Int, b: Byte) = (b - a).toByte
override def min = Some(Byte.MinValue)
override def max = Some(Byte.MaxValue)
override def equalIsNatural: Boolean = true
object multiplication extends Monoid[Byte] {
def append(f1: Byte, f2: => Byte) = (f1 * f2).toByte
def zero: Byte = 1
}
}
import Tags.{Multiplication}
implicit val byteMultiplicationNewType: Monoid[Byte @@ Multiplication] with Enum[Byte @@ Multiplication] = new Monoid[Byte @@ Multiplication] with Enum[Byte @@ Multiplication] {
def append(f1: Byte @@ Multiplication, f2: => Byte @@ Multiplication) = Multiplication((f1 * f2).toByte)
def zero: Byte @@ Multiplication = Multiplication(1)
def order(a1: Byte @@ Multiplication, a2: Byte @@ Multiplication) = Order[Byte].order(a1, a2)
def succ(b: Byte @@ Multiplication) = Multiplication(Enum[Byte].succ(b))
def pred(b: Byte @@ Multiplication) = Multiplication(Enum[Byte].pred(b))
override def succn(n: Int, b: Byte @@ Multiplication) = Multiplication(Enum[Byte].succn(n, b))
override def predn(n: Int, b: Byte @@ Multiplication) = Multiplication(Enum[Byte].predn(n, b))
override def min = Enum[Byte].min map (Multiplication(_))
override def max = Enum[Byte].max map (Multiplication(_))
override def equalIsNatural: Boolean = true
}
implicit val char: Monoid[Char] with Enum[Char] with Show[Char] = new Monoid[Char] with Enum[Char] with Show[Char] {
override def shows(f: Char) = f.toString
def append(f1: Char, f2: => Char) = (f1 + f2).toChar
def zero: Char = 0
def order(x: Char, y: Char) = if (x < y) Ordering.LT else if (x == y) Ordering.EQ else Ordering.GT
def succ(b: Char) = (b + 1).toChar
def pred(b: Char) = (b - 1).toChar
override def succn(a: Int, b: Char) = (b + a).toChar
override def predn(a: Int, b: Char) = (b - a).toChar
override def min = Some(Char.MinValue)
override def max = Some(Char.MaxValue)
override def equalIsNatural: Boolean = true
object multiplication extends Monoid[Char] {
def append(f1: Char, f2: => Char) = (f1 * f2).toChar
def zero: Char = 1
}
}
implicit val charMultiplicationNewType: Monoid[Char @@ Multiplication] with Enum[Char @@ Multiplication] = new Monoid[Char @@ Multiplication] with Enum[Char @@ Multiplication] {
def append(f1: Char @@ Multiplication, f2: => Char @@ Multiplication) = Multiplication((f1 * f2).toChar)
def zero: Char @@ Multiplication = Multiplication(1)
def order(a1: Char @@ Multiplication, a2: Char @@ Multiplication) = Order[Char].order(a1, a2)
def succ(b: Char @@ Multiplication) = Multiplication(Enum[Char].succ(b))
def pred(b: Char @@ Multiplication) = Multiplication(Enum[Char].pred(b))
override def succn(n: Int, b: Char @@ Multiplication) = Multiplication(Enum[Char].succn(n, b))
override def predn(n: Int, b: Char @@ Multiplication) = Multiplication(Enum[Char].predn(n, b))
override def min = Enum[Char].min map (Multiplication(_))
override def max = Enum[Char].max map (Multiplication(_))
override def equalIsNatural: Boolean = true
}
implicit val shortInstance: Group[Short] with Enum[Short] with Show[Short] = new Group[Short] with Enum[Short] with Show[Short] {
override def shows(f: Short) = f.toString
def append(f1: Short, f2: => Short) = (f1 + f2).toShort
def zero: Short = 0
def inverse(f:Short) = (-f).toShort
def order(x: Short, y: Short) = if (x < y) Ordering.LT else if (x == y) Ordering.EQ else Ordering.GT
def succ(b: Short) = (b + 1).toShort
def pred(b: Short) = (b - 1).toShort
override def succn(a: Int, b: Short) = (b + a).toShort
override def predn(a: Int, b: Short) = (b - a).toShort
override def min = Some(Short.MinValue)
override def max = Some(Short.MaxValue)
override def equalIsNatural: Boolean = true
object multiplication extends Monoid[Short] {
def append(f1: Short, f2: => Short) = (f1 * f2).toShort
def zero: Short = 1
}
}
implicit val shortMultiplicationNewType: Monoid[Short @@ Multiplication] with Enum[Short @@ Multiplication] = new Monoid[Short @@ Multiplication] with Enum[Short @@ Multiplication] {
def append(f1: Short @@ Multiplication, f2: => Short @@ Multiplication) = Multiplication((f1 * f2).toShort)
def zero: Short @@ Multiplication = Multiplication(1)
def succ(b: Short @@ Multiplication) = Multiplication(Enum[Short].succ(b))
def pred(b: Short @@ Multiplication) = Multiplication(Enum[Short].pred(b))
override def succn(n: Int, b: Short @@ Multiplication) = Multiplication(Enum[Short].succn(n, b))
override def predn(n: Int, b: Short @@ Multiplication) = Multiplication(Enum[Short].predn(n, b))
override def min = Enum[Short].min map (Multiplication(_))
override def max = Enum[Short].max map (Multiplication(_))
def order(a1: Short @@ Multiplication, a2: Short @@ Multiplication) = Order[Short].order(a1, a2)
}
implicit val intInstance: Group[Int] with Enum[Int] with Show[Int] = new Group[Int] with Enum[Int] with Show[Int] {
override def shows(f: Int) = f.toString
def append(f1: Int, f2: => Int) = f1 + f2
def zero: Int = 0
def inverse(f:Int) = -f
def distance(a: Int, b: Int): Int = b - a
def order(x: Int, y: Int) = if (x < y) Ordering.LT else if (x == y) Ordering.EQ else Ordering.GT
def succ(b: Int) = b + 1
def pred(b: Int) = b - 1
override def succn(a: Int, b: Int) = b + a
override def predn(a: Int, b: Int) = b - a
override def min = Some(Int.MinValue)
override def max = Some(Int.MaxValue)
override def equalIsNatural: Boolean = true
object multiplication extends Monoid[Int] {
def append(f1: Int, f2: => Int) = f1 * f2
def zero: Int = 1
}
}
/** Warning: the triangle inequality will not hold if `b - a` overflows. */
implicit val intMetricSpace: MetricSpace[Int] = new MetricSpace[Int] {
def distance(a: Int, b: Int): Int = scala.math.abs(b - a)
}
implicit val intMultiplicationNewType: Monoid[Int @@ Multiplication] with Enum[Int @@ Multiplication] = new Monoid[Int @@ Multiplication] with Enum[Int @@ Multiplication] {
def append(f1: Int @@ Multiplication, f2: => Int @@ Multiplication) = Multiplication(f1 * f2)
def zero: Int @@ Multiplication = Multiplication(1)
def succ(b: Int @@ Multiplication) = Multiplication(Enum[Int].succ(b))
def pred(b: Int @@ Multiplication) = Multiplication(Enum[Int].pred(b))
override def succn(n: Int, b: Int @@ Multiplication) = Multiplication(Enum[Int].succn(n, b))
override def predn(n: Int, b: Int @@ Multiplication) = Multiplication(Enum[Int].predn(n, b))
override def min = Enum[Int].min map (Multiplication(_))
override def max = Enum[Int].max map (Multiplication(_))
def order(a1: Int @@ Multiplication, a2: Int @@ Multiplication) = Order[Int].order(a1, a2)
}
implicit val longInstance: Group[Long] with Enum[Long] with Show[Long] = new Group[Long] with Enum[Long] with Show[Long] {
override def shows(f: Long) = f.toString
def append(f1: Long, f2: => Long) = f1 + f2
def zero: Long = 0L
def inverse(f: Long) = -f
def order(x: Long, y: Long) = if (x < y) Ordering.LT else if (x == y) Ordering.EQ else Ordering.GT
def succ(b: Long) = b + 1
def pred(b: Long) = b - 1
override def succn(a: Int, b: Long) = b + a
override def predn(a: Int, b: Long) = b - a
override def min = Some(Long.MinValue)
override def max = Some(Long.MaxValue)
override def equalIsNatural: Boolean = true
object multiplication extends Monoid[Long] {
def append(f1: Long, f2: => Long) = f1 * f2
def zero: Long = 1
}
}
implicit val longMultiplicationNewType: Monoid[Long @@ Multiplication] with Enum[Long @@ Multiplication] = new Monoid[Long @@ Multiplication] with Enum[Long @@ Multiplication] {
def append(f1: Long @@ Multiplication, f2: => Long @@ Multiplication) = Multiplication(f1 * f2)
def zero: Long @@ Multiplication = Multiplication(1)
def succ(b: Long @@ Multiplication) = Multiplication(Enum[Long].succ(b))
def pred(b: Long @@ Multiplication) = Multiplication(Enum[Long].pred(b))
override def succn(n: Int, b: Long @@ Multiplication) = Multiplication(Enum[Long].succn(n, b))
override def predn(n: Int, b: Long @@ Multiplication) = Multiplication(Enum[Long].predn(n, b))
override def min = Enum[Long].min map (Multiplication(_))
override def max = Enum[Long].max map (Multiplication(_))
def order(a1: Long @@ Multiplication, a2: Long @@ Multiplication) = Order[Long].order(a1, a2)
}
implicit val floatInstance: Group[Float] with Enum[Float] with Show[Float] = new Group[Float] with Enum[Float] with Show[Float] {
override def shows(f: Float) = f.toString
def append(f1: Float, f2: => Float) = f1 + f2
def zero: Float = 0f
def inverse(f: Float) = -f
def succ(b: Float) = b + 1
def pred(b: Float) = b - 1
override def succn(a: Int, b: Float) = b + a
override def predn(a: Int, b: Float) = b - a
override def min = Some(Float.MinValue)
override def max = Some(Float.MaxValue)
override def equalIsNatural: Boolean = true
def order(x: Float, y: Float) = if (x < y) Ordering.LT else if (x == y) Ordering.EQ else Ordering.GT
}
implicit val floatMultiplicationNewType: Group[Float @@ Multiplication] = new Group[Float @@ Multiplication] {
def append(f1: Float @@ Multiplication, f2: => Float @@ Multiplication) = Multiplication(f1 * f2)
def zero: Float @@ Multiplication = Multiplication(1.0f)
def inverse(f: Float @@ Multiplication) = Multiplication(1.0f/f)
}
implicit val doubleInstance: Group[Double] with Enum[Double] with Show[Double] = new Group[Double] with Enum[Double] with Show[Double] {
override def shows(f: Double) = f.toString
def append(f1: Double, f2: => Double) = f1 + f2
def zero: Double = 0d
def inverse(f: Double) = -f
def order(x: Double, y: Double) = if (x < y) Ordering.LT else if (x == y) Ordering.EQ else Ordering.GT
def succ(b: Double) = b + 1
def pred(b: Double) = b - 1
override def succn(a: Int, b: Double) = b + a
override def predn(a: Int, b: Double) = b - a
override def min = Some(Double.MinValue)
override def max = Some(Double.MaxValue)
override def equalIsNatural: Boolean = true
}
implicit val doubleMultiplicationNewType: Group[Double @@ Multiplication] = new Group[Double @@ Multiplication] {
def append(f1: Double @@ Multiplication, f2: => Double @@ Multiplication) = Multiplication(f1 * f2)
def zero: Double @@ Multiplication = Multiplication(1.0d)
def inverse(f: Double @@ Multiplication) = Multiplication(1.0d/f)
}
}
trait BooleanFunctions {
/**
* Conjunction. (AND)
*
* {{{
* p q p ∧ q
* 0 0 0
* 0 1 0
* 1 0 0
* 1 1 1
* }}}
*/
final def conjunction(p: Boolean, q: => Boolean) = p && q
/**
* Disjunction. (OR)
*
* {{{
* p q p ∨ q
* 0 0 0
* 0 1 1
* 1 0 1
* 1 1 1
* }}}
*/
final def disjunction(p: Boolean, q: => Boolean) = p || q
/**
* Negation of Conjunction. (NOR)
*
* {{{
* p q p !&& q
* 0 0 1
* 0 1 1
* 1 0 1
* 1 1 0
* }}}
*/
final def nor(p: Boolean, q: => Boolean) = !p || !q
/**
* Negation of Disjunction. (NAND)
*
* {{{
* p q p !|| q
* 0 0 1
* 0 1 0
* 1 0 0
* 1 1 0
* }}}
*/
final def nand(p: Boolean, q: => Boolean) = !p && !q
/**
* Conditional.
*
* {{{
* p q p --> q
* 0 0 1
* 0 1 1
* 1 0 0
* 1 1 1
* }}}
*/
final def conditional(p: Boolean, q: => Boolean) = !p || q
/**
* Inverse Conditional.
*
* {{{
* p q p <-- q
* 0 0 1
* 0 1 0
* 1 0 1
* 1 1 1
* }}}
*/
final def inverseConditional(p: Boolean, q: => Boolean) = p || !q
/**
* Negational of Conditional.
*
* {{{
* p q p ⇏ q
* 0 0 0
* 0 1 0
* 1 0 1
* 1 1 0
* }}}
*/
final def negConditional(p: Boolean, q: => Boolean) = p && !q
/**
* Negation of Inverse Conditional.
*
* {{{
* p q p <\- q
* 0 0 0
* 0 1 1
* 1 0 0
* 1 1 0
* }}}
*/
final def negInverseConditional(p: Boolean, q: => Boolean) = !p && q
/**
* Executes the given side-effect if `cond` is `false`
*/
final def unless(cond: Boolean)(f: => Unit) = if (!cond) f
/**
* Executes the given side-effect if `cond` is `true`
*/
final def when(cond: Boolean)(f: => Unit) = if (cond) f
/**
* Returns the given argument if `cond` is `false`, otherwise, unit lifted into M.
*/
final def unlessM[M[_], A](cond: Boolean)(f: => M[A])(implicit M: Applicative[M]): M[Unit] = if (cond) M.point(()) else M.void(f)
/**
* Returns the given argument if `cond` is `true`, otherwise, unit lifted into M.
*/
final def whenM[M[_], A](cond: Boolean)(f: => M[A])(implicit M: Applicative[M]): M[Unit] = if (cond) M.void(f) else M.point(())
/**
* @return `t` if `cond` is `true`, `f` otherwise
*/
final def fold[A](cond: Boolean, t: => A, f: => A): A = if (cond) t else f
/**
* Returns the given argument in `Some` if `cond` is `true`, `None` otherwise.
*/
final def option[A](cond: Boolean, a: => A): Option[A] = if (cond) Some(a) else None
/** Returns `1` if `p` is true, or `0` otherwise. */
def test(p: Boolean): Int = if (p) 1 else 0
/**
* Returns the given argument if `cond` is `true`, otherwise, the zero element for the type of the given
* argument.
*/
final def valueOrZero[A](cond: Boolean)(value: => A)(implicit z: Monoid[A]): A = if (cond) value else z.zero
/**
* Returns the given argument if `cond` is `false`, otherwise, the zero element for the type of the given
* argument.
*/
final def zeroOrValue[A](cond: Boolean)(value: => A)(implicit z: Monoid[A]): A = if (!cond) value else z.zero
/**
* Returns the value `a` lifted into the context `M` if `cond` is `true`, otherwise, the empty value
* for `M`.
*/
final def pointOrEmpty[M[_], A](cond: Boolean)(a: => A)(implicit M: Pointed[M], M0: PlusEmpty[M]): M[A] =
if (cond) M.point(a) else M0.empty
/**
* Returns the value `a` lifted into the context `M` if `cond` is `false`, otherwise, the empty value
* for `M`.
*/
final def emptyOrPure[M[_], A](cond: Boolean)(a: => A)(implicit M: Pointed[M], M0: PlusEmpty[M]): M[A] =
if (!cond) M.point(a) else M0.empty
final def pointOrEmptyNT[M[_]](cond: Boolean)(implicit M: Pointed[M], M0: PlusEmpty[M]): (Id ~> M) =
new (Id ~> M) {
def apply[A](a: A): M[A] = pointOrEmpty[M, A](cond)(a)
}
final def emptyOrPureNT[M[_]](cond: Boolean)(implicit M: Pointed[M], M0: PlusEmpty[M]): (Id ~> M) =
new (Id ~> M) {
def apply[A](a: A): M[A] = emptyOrPure[M, A](cond)(a)
}
}
trait IntFunctions {
def heaviside(i: Int) = if (i < 0) 0 else i
}
trait ShortFunctions {
def heaviside(i: Short) = if (i < 0) 0 else i
}
trait LongFunctions {
def heaviside(i: Long) = if (i < 0) 0 else i
}
trait DoubleFunctions {
def heaviside(i: Double) = if (i < 0) 0 else i
}
trait FloatFunctions {
def heaviside(i: Float) = if (i < 0) 0 else i
}
object anyVal extends AnyValInstances
object boolean extends BooleanFunctions
object short extends ShortFunctions
object int extends IntFunctions
object long extends LongFunctions
object double extends DoubleFunctions
object float extends FloatFunctions
© 2015 - 2025 Weber Informatics LLC | Privacy Policy