All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.spf4j.ds.RTree Maven / Gradle / Ivy

Go to download

A continuously growing collection of utilities to measure performance, get better diagnostics, improve performance, or do things more reliably, faster that other open source libraries...

There is a newer version: 8.10.0
Show newest version
/*
 * Copyright (c) 2001-2017, Zoltan Farkas All Rights Reserved.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
 * Additionally licensed with:
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.spf4j.ds;

import edu.umd.cs.findbugs.annotations.SuppressFBWarnings;
import java.util.Arrays;
import java.util.Deque;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.ListIterator;
import java.util.Set;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;

/**
 * Implementation of an arbitrary-dimension RTree. Based on R-Trees: A Dynamic Index Structure for Spatial Searching
 * (Antonn Guttmann, 1984)
 *
 * This class is not thread-safe. Z TODO: I have cleaned up a bit this class, but there is a lot more to do here this
 * class implementation is not clean in several places. (see findbugs supressions)
 *
 * @param  the type of entry to store in this RTree.
 */
@SuppressFBWarnings({"CLI_CONSTANT_LIST_INDEX", "BC_UNCONFIRMED_CAST_OF_RETURN_VALUE",
  "PRMC_POSSIBLY_REDUNDANT_METHOD_CALLS", "PREDICTABLE_RANDOM", "IMC_IMMATURE_CLASS_WRONG_FIELD_ORDER"})
public final class RTree {

  private static final float DIM_FACTOR = -2.0f;
  private static final float FUDGE_FACTOR = 1.001f;
  private static final float INIT_COORD = (float) Math.sqrt(Float.MAX_VALUE);

  public enum SeedPicker {
    LINEAR, QUADRATIC
  }

  private final int maxEntries;
  private final int minEntries;
  private final int numDims;
  private final float[] pointDims;
  private final SeedPicker seedPicker;
  private Node root;
  private int size;

  /**
   * Creates a new RTree.
   *
   * @param maxEntries maximum number of entries per node
   * @param minEntries minimum number of entries per node (except for the root node)
   * @param numDims the number of dimensions of the RTree.
   */
  public RTree(final int maxEntries, final int minEntries, final int numDims,
          final SeedPicker seedPicker) {
    assert (minEntries <= (maxEntries / 2));
    this.numDims = numDims;
    this.maxEntries = maxEntries;
    this.minEntries = minEntries;
    this.seedPicker = seedPicker;
    pointDims = new float[numDims];
    root = buildRoot(true);
  }

  public RTree(final int maxEntries, final int minEntries, final int numDims) {
    this(maxEntries, minEntries, numDims, SeedPicker.LINEAR);
  }

  private Node buildRoot(final boolean asLeaf) {
    float[] initCoords = new float[numDims];
    float[] initDimensions = new float[numDims];
    for (int i = 0; i < this.numDims; i++) {
      initCoords[i] = INIT_COORD;
      initDimensions[i] = DIM_FACTOR * INIT_COORD;
    }
    return new Node(initCoords, initDimensions, asLeaf);
  }

  /**
   * Builds a new RTree using default parameters: maximum 50 entries per node minimum 2 entries per node 2 dimensions
   */
  public RTree() {
    this(50, 2, 2, SeedPicker.LINEAR);
  }

  public RTree(final int numDimensions) {
    this(50, 2, numDimensions, SeedPicker.LINEAR);
  }

  /**
   * @return the maximum number of entries per node
   */
  public int getMaxEntries() {
    return maxEntries;
  }

  /**
   * @return the minimum number of entries per node for all nodes except the root.
   */
  public int getMinEntries() {
    return minEntries;
  }

  /**
   * @return the number of dimensions of the tree
   */
  public int getNumDims() {
    return numDims;
  }

  /**
   * @return the number of items in this tree.
   */
  public int size() {
    return size;
  }

  /**
   * Searches the RTree for objects overlapping with the given rectangle.
   *
   * @param coords the corner of the rectangle that is the lower bound of every dimension (eg. the top-left corner)
   * @param dimensions the dimensions of the rectangle.
   * @return a list of objects whose rectangles overlap with the given rectangle.
   */
  @Nonnull
  public List search(final float[] coords, final float[] dimensions) {
    assert (coords.length == numDims);
    assert (dimensions.length == numDims);
    LinkedList results = new LinkedList();
    search(coords, dimensions, root, results);
    return results;
  }

  private void search(final float[] coords, final float[] dimensions, final Node n,
          final LinkedList results) {
    if (n.leaf) {
      for (Node e : n.children) {
        if (isOverlap(coords, dimensions, e.coords, e.dimensions)) {
          results.add(((Entry) e).entry);
        }
      }
    } else {
      for (Node c : n.children) {
        if (isOverlap(coords, dimensions, c.coords, c.dimensions)) {
          search(coords, dimensions, c, results);
        }
      }
    }
  }

  /**
   * Deletes the entry associated with the given rectangle from the RTree
   *
   * @param coords the corner of the rectangle that is the lower bound in every dimension
   * @param dimensions the dimensions of the rectangle
   * @param entry the entry to delete
   * @return true iff the entry was deleted from the RTree.
   */
  public boolean delete(final float[] coords, final float[] dimensions, final T entry) {
    assert (coords.length == numDims);
    assert (dimensions.length == numDims);
    Node l = findLeaf(root, coords, dimensions, entry);
    if (l == null) {
      throw new IllegalArgumentException("leaf not found for entry " + entry);
    }
    ListIterator li = l.children.listIterator();
    T removed = null;
    while (li.hasNext()) {
      @SuppressWarnings("unchecked")
      Entry e = (Entry) li.next();
      if (e.entry.equals(entry)) {
        removed = e.entry;
        li.remove();
        break;
      }
    }
    if (removed != null) {
      condenseTree(l);
      size--;
    }
    if (size == 0) {
      root = buildRoot(true);
    }
    return (removed != null);
  }

  public boolean delete(final float[] coords, final T entry) {
    return delete(coords, pointDims, entry);
  }

  @Nullable
  private Node findLeaf(final Node n, final float[] coords,
          final float[] dimensions, final T entry) {
    if (n.leaf) {
      for (Node c : n.children) {
        if (((Entry) c).entry.equals(entry)) {
          return n;
        }
      }
      return null;
    } else {
      for (Node c : n.children) {
        if (isOverlap(c.coords, c.dimensions, coords, dimensions)) {
          Node result = findLeaf(c, coords, dimensions, entry);
          if (result != null) {
            return result;
          }
        }
      }
      return null;
    }
  }

  private void condenseTree(final Node pn) {
    Node n = pn;
    Set q = new HashSet();
    while (n != root) {
      if (n.leaf && (n.children.size() < minEntries)) {
        q.addAll(n.children);
        n.parent.children.remove(n);
      } else if (!n.leaf && (n.children.size() < minEntries)) {
        // probably a more efficient way to do this...
        LinkedList toVisit = new LinkedList(n.children);
        while (!toVisit.isEmpty()) {
          Node c = toVisit.pop();
          if (c.leaf) {
            q.addAll(c.children);
          } else {
            toVisit.addAll(c.children);
          }
        }
        n.parent.children.remove(n);
      } else {
        tighten(n);
      }
      n = n.parent;
    }
    if (root.children.size() == 0) {
      root = buildRoot(true);
    } else if ((!root.leaf) && (root.children.size() == 1)) {
      root = root.children.get(0);
      root.parent = null;
    } else {
      tighten(root);
    }
    for (Node ne : q) {
      @SuppressWarnings("unchecked")
      Entry e = (Entry) ne;
      insert(e.coords, e.dimensions, e.entry);
    }
    size -= q.size();
  }

  /**
   * Empties the RTree
   */
  public void clear() {
    root = buildRoot(true);
    // let the GC take care of the rest.
  }

  /**
   * Inserts the given entry into the RTree, associated with the given rectangle.
   *
   * @param coords the corner of the rectangle that is the lower bound in every dimension
   * @param dimensions the dimensions of the rectangle
   * @param entry the entry to insert
   */
  public void insert(final float[] coords, final float[] dimensions, final T entry) {
    assert (coords.length == numDims);
    assert (dimensions.length == numDims);
    Entry e = new Entry(coords, dimensions, entry);
    Node l = chooseLeaf(root, e);
    l.children.add(e);
    size++;
    e.parent = l;
    if (l.children.size() > maxEntries) {
      Node[] splits = splitNode(l);
      adjustTree(splits[0], splits[1]);
    } else {
      adjustTree(l, null);
    }
  }

  /**
   * Convenience method for inserting a point
   *
   * @param coords
   * @param entry
   */
  public void insert(final float[] coords, final T entry) {
    insert(coords, pointDims, entry);
  }

  private void adjustTree(final Node n, final Node nn) {
    if (n == root) {
      if (nn != null) {
        // build new root and add children.
        root = buildRoot(false);
        root.children.add(n);
        n.parent = root;
        root.children.add(nn);
        nn.parent = root;
      }
      tighten(root);
      return;
    }
    tighten(n);
    if (nn != null) {
      tighten(nn);
      if (n.parent.children.size() > maxEntries) {
        Node[] splits = splitNode(n.parent);
        adjustTree(splits[0], splits[1]);
      }
    }
    if (n.parent != null) {
      adjustTree(n.parent, null);
    }
  }

  private Node[] splitNode(final Node n) {
    // TODO: this class probably calls "tighten" a little too often.
    // For instance the call at the end of the "while (!cc.isEmpty())" loop
    // could be modified and inlined because it's only adjusting for the addition
    // of a single node.  Left as-is for now for readability.
    @SuppressWarnings("unchecked")
    Node[] nn = new RTree.Node[]{n, new Node(n.coords, n.dimensions, n.leaf)};
    final Node nn1 = nn[1];
    nn1.parent = n.parent;
    if (nn1.parent != null) {
      nn1.parent.children.add(nn1);
    }
    LinkedList cc = new LinkedList(n.children);
    n.children.clear();
    Node[] ss = seedPicker == SeedPicker.LINEAR ? lPickSeeds(cc) : qPickSeeds(cc);
    final Node nn0 = nn[0];
    nn0.children.add(ss[0]);
    nn1.children.add(ss[1]);
    tighten(nn);
    while (!cc.isEmpty()) {
      final int size0 = nn0.children.size();
      final int size1 = nn1.children.size();
      if ((size0 >= minEntries)
              && (size1 + cc.size() == minEntries)) {
        nn1.children.addAll(cc);
        cc.clear();
        tighten(nn); // Not sure this is required.
        return nn;
      } else if ((size1 >= minEntries)
              && (size0 + cc.size() == minEntries)) {
        nn0.children.addAll(cc);
        cc.clear();
        tighten(nn); // Not sure this is required.
        return nn;
      }
      Node c = seedPicker == SeedPicker.LINEAR ? lPickNext(cc) : qPickNext(cc, nn);
      Node preferred;
      float e0 = getRequiredExpansion(nn0.coords, nn0.dimensions, c);
      float e1 = getRequiredExpansion(nn1.coords, nn1.dimensions, c);
      if (e0 < e1) {
        preferred = nn0;
      } else if (e0 > e1) {
        preferred = nn1;
      } else {
        float a0 = getArea(nn0.dimensions);
        float a1 = getArea(nn1.dimensions);
        if (a0 < a1) {
          preferred = nn0;
        } else if (e0 > a1) {
          preferred = nn1;
        } else {
          if (size0 < size1) {
            preferred = nn0;
          } else if (size0 > size1) {
            preferred = nn1;
          } else {
            preferred = nn[(int) Math.round(Math.random())];
          }
        }
      }
      preferred.children.add(c);
      tighten(preferred);
    }
    return nn;
  }

  // Implementation of Quadratic PickSeeds
  @SuppressFBWarnings("MRC_METHOD_RETURNS_CONSTANT")
  private Node[] qPickSeeds(final List nn) {
    @SuppressWarnings("unchecked")
    Node[] bestPair = new Node[2];
    float maxWaste = -1.0f * Float.MAX_VALUE;
    for (Node n1 : nn) {
      for (Node n2 : nn) {
        if (n1 == n2) {
          continue;
        }
        float n1a = getArea(n1.dimensions);
        float n2a = getArea(n2.dimensions);
        float ja = 1.0f;
        for (int i = 0; i < numDims; i++) {
          final float n1coordsi = n1.coords[i];
          final float n2coordsi = n2.coords[i];
          float jc0 = Math.min(n1coordsi, n2coordsi);
          float jc1 = Math.max(n1coordsi + n1.dimensions[i], n2coordsi + n2.dimensions[i]);
          ja *= (jc1 - jc0);
        }
        float waste = ja - n1a - n2a;
        if (waste > maxWaste) {
          maxWaste = waste;
          bestPair[0] = n1;
          bestPair[1] = n2;
        }
      }
    }
    nn.remove(bestPair[0]);
    nn.remove(bestPair[1]);
    return bestPair;
  }

  /**
   * Implementation of QuadraticPickNext
   *
   * @param cc the children to be divided between the new nodes, one item will be removed from this list.
   * @param nn the candidate nodes for the children to be added to.
   */
  private Node qPickNext(final LinkedList cc, final Node[] nn) {
    float maxDiff = -1.0f * Float.MAX_VALUE;
    Node nextC = null;
    for (Node c : cc) {
      float n0Exp = getRequiredExpansion(nn[0].coords, nn[0].dimensions, c);
      float n1Exp = getRequiredExpansion(nn[1].coords, nn[1].dimensions, c);
      float diff = Math.abs(n1Exp - n0Exp);
      if (diff > maxDiff) {
        maxDiff = diff;
        nextC = c;
      }
    }
    assert (nextC != null) : "No node selected from qPickNext";
    cc.remove(nextC);
    return nextC;
  }

  // Implementation of LinearPickSeeds
  private Node[] lPickSeeds(final LinkedList nn) {
    @SuppressWarnings("unchecked")
    Node[] bestPair = new RTree.Node[2];
    boolean foundBestPair = false;
    float bestSep = 0.0f;
    for (int i = 0; i < numDims; i++) {
      float dimLb = Float.MAX_VALUE, dimMinUb = Float.MAX_VALUE;
      float dimUb = -1.0f * Float.MAX_VALUE, dimMaxLb = -1.0f * Float.MAX_VALUE;
      Node nMaxLb = null, nMinUb = null;
      for (Node n : nn) {
        if (n.coords[i] < dimLb) {
          dimLb = n.coords[i];
        }
        if (n.dimensions[i] + n.coords[i] > dimUb) {
          dimUb = n.dimensions[i] + n.coords[i];
        }
        if (n.coords[i] > dimMaxLb) {
          dimMaxLb = n.coords[i];
          nMaxLb = n;
        }
        if (n.dimensions[i] + n.coords[i] < dimMinUb) {
          dimMinUb = n.dimensions[i] + n.coords[i];
          nMinUb = n;
        }
      }
      float sep = (nMaxLb == nMinUb) ? -1.0f
              : Math.abs((dimMinUb - dimMaxLb) / (dimUb - dimLb));
      if (sep >= bestSep) {
        bestPair[0] = nMaxLb;
        bestPair[1] = nMinUb;
        bestSep = sep;
        foundBestPair = true;
      }
    }
    // In the degenerate case where all points are the same, the above
    // algorithm does not find a best pair.  Just pick the first 2
    // children.
    if (!foundBestPair) {
      bestPair = new RTree.Node[]{nn.get(0), nn.get(1)};
    }
    nn.remove(bestPair[0]);
    nn.remove(bestPair[1]);
    return bestPair;
  }

  /**
   * Implementation of LinearPickNext
   *
   * @param cc the children to be divided between the new nodes, one item will be removed from this list.
   */
  private Node lPickNext(final Deque cc) {
    return cc.pop();
  }

  private void tighten(final Node... nodes) {
    assert (nodes.length >= 1) : "Pass some nodes to tighten!";
    for (Node n : nodes) {
      assert (n.children.size() > 0) : "tighten() called on empty node!";
      float[] minCoords = new float[numDims];
      float[] maxCoords = new float[numDims];
      for (int i = 0; i < numDims; i++) {
        minCoords[i] = Float.MAX_VALUE;
        maxCoords[i] = Float.MIN_VALUE;

        for (Node c : n.children) {
          // we may have bulk-added a bunch of children to a node (eg. in
          // splitNode)
          // so here we just enforce the child->parent relationship.
          c.parent = n;
          if (c.coords[i] < minCoords[i]) {
            minCoords[i] = c.coords[i];
          }
          if ((c.coords[i] + c.dimensions[i]) > maxCoords[i]) {
            maxCoords[i] = (c.coords[i] + c.dimensions[i]);
          }
        }
      }
      for (int i = 0; i < numDims; i++) {
        // Convert max coords to dimensions
        maxCoords[i] -= minCoords[i];
      }
      System.arraycopy(minCoords, 0, n.coords, 0, numDims);
      System.arraycopy(maxCoords, 0, n.dimensions, 0, numDims);
    }
  }

  private Node chooseLeaf(final Node n, final Entry e) {
    if (n.leaf) {
      return n;
    }
    float minInc = Float.MAX_VALUE;
    Node next = null;
    for (Node c : n.children) {
      float inc = getRequiredExpansion(c.coords, c.dimensions, e);
      if (inc < minInc) {
        minInc = inc;
        next = c;
      } else if (inc == minInc) {
        float curArea = 1.0f;
        float thisArea = 1.0f;
        for (int i = 0; i < c.dimensions.length; i++) {
          if (next == null) {
            throw new IllegalStateException("Illegal state at " + c);
          }
          curArea *= next.dimensions[i];
          thisArea *= c.dimensions[i];
        }
        if (thisArea < curArea) {
          next = c;
        }
      }
    }
    return chooseLeaf(next, e);
  }

  /**
   * Returns the increase in area necessary for the given rectangle to cover the given entry.
   */
  private float getRequiredExpansion(final float[] coords, final float[] dimensions, final Node e) {
    float area = getArea(dimensions);
    float[] deltas = new float[dimensions.length];
    for (int i = 0; i < deltas.length; i++) {
      if (coords[i] + dimensions[i] < e.coords[i] + e.dimensions[i]) {
        deltas[i] = e.coords[i] + e.dimensions[i] - coords[i] - dimensions[i];
      } else if (coords[i] + dimensions[i] > e.coords[i] + e.dimensions[i]) {
        deltas[i] = coords[i] - e.coords[i];
      }
    }
    float expanded = 1.0f;
    for (int i = 0; i < dimensions.length; i++) {
      area *= dimensions[i] + deltas[i];
    }
    return (expanded - area);
  }

  private float getArea(final float[] dimensions) {
    float area = 1.0f;
    for (int i = 0; i < dimensions.length; i++) {
      area *= dimensions[i];
    }
    return area;
  }

  private boolean isOverlap(final float[] scoords, final float[] sdimensions,
          final float[] coords, final float[] dimensions) {

    for (int i = 0; i < scoords.length; i++) {
      boolean overlapInThisDimension = false;
      if (scoords[i] == coords[i]) {
        overlapInThisDimension = true;
      } else if (scoords[i] < coords[i]) {
        if (scoords[i] + FUDGE_FACTOR * sdimensions[i] >= coords[i]) {
          overlapInThisDimension = true;
        }
      } else if (scoords[i] > coords[i]) {
        if (coords[i] + FUDGE_FACTOR * dimensions[i] >= scoords[i]) {
          overlapInThisDimension = true;
        }
      }
      if (!overlapInThisDimension) {
        return false;
      }
    }
    return true;
  }

  // CHECKSTYLE:OFF
  private static class Node {

    final float[] coords;
    final float[] dimensions;
    final LinkedList children;
    final boolean leaf;
    Node parent;

    private Node(float[] coords, float[] dimensions, boolean leaf) {
      this.coords = new float[coords.length];
      this.dimensions = new float[dimensions.length];
      System.arraycopy(coords, 0, this.coords, 0, coords.length);
      System.arraycopy(dimensions, 0, this.dimensions, 0, dimensions.length);
      this.leaf = leaf;
      children = new LinkedList<>();
    }

    @Override
    public String toString() {
      return "Node{" + "coords=" + Arrays.toString(coords) + ", dimensions="
              + Arrays.toString(dimensions) + ", children="
              + children + ", leaf=" + leaf + ", parent=" + parent + '}';
    }

  }

  private static class Entry extends Node {

    public final T entry;

    public Entry(final float[] coords, final float[] dimensions, final T entry) {
      // an entry isn't actually a leaf (its parent is a leaf)
      // but all the algorithms should stop at the first leaf they encounter,
      // so this little hack shouldn't be a problem.
      super(coords, dimensions, true);
      this.entry = entry;
    }

    @Override
    public String toString() {
      return "Entry: " + entry;
    }
  }
  //CHECKSTYLE:ON

  // The methods below this point can be used to create an HTML rendering
  // of the RTree.  Maybe useful for debugging?
  private static final int ELEM_WIDTH = 150;
  private static final int ELEM_HEIGHT = 120;

  public String visualize() {
    int ubDepth = (int) Math.ceil(Math.log(size) / Math.log(minEntries)) * ELEM_HEIGHT;
    int ubWidth = size * ELEM_WIDTH;
    java.io.StringWriter sw = new java.io.StringWriter();
    java.io.PrintWriter pw = new java.io.PrintWriter(sw);
    pw.println("");
    visualize(root, pw, 0, 0, ubWidth, ubDepth);
    pw.println("");
    pw.flush();
    return sw.toString();
  }

  private void visualize(final Node n, final java.io.PrintWriter pw, final int x0,
          final int y0, final int w, final int h) {
    pw.printf("
%n", x0, y0, w, h); pw.println("
");
    pw.println("Node: " + n + " (root==" + (n == root) + ") \n");
    pw.println("Coords: " + Arrays.toString(n.coords) + '\n');
    pw.println("Dimensions: " + Arrays.toString(n.dimensions) + '\n');
    pw.println("# Children: " + ((n.children == null) ? 0 : n.children.size()) + '\n');
    pw.println("isLeaf: " + n.leaf + '\n');
    pw.println("
"); int numChildren = (n.children == null) ? 0 : n.children.size(); for (int i = 0; i < numChildren; i++) { visualize(n.children.get(i), pw, (int) (x0 + (i * w / (float) numChildren)), y0 + ELEM_HEIGHT, (int) (w / (float) numChildren), h - ELEM_HEIGHT); } pw.println("
"); } @Override public String toString() { return "RTree{" + "maxEntries=" + maxEntries + ", minEntries=" + minEntries + ", numDims=" + numDims + ", pointDims=" + Arrays.toString(pointDims) + ", seedPicker=" + seedPicker + ", root=" + root + ", size=" + size + '}'; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy