spire.math.Sorting.scala Maven / Gradle / Ivy
package spire.math
import scala.annotation.tailrec
import scala.reflect.ClassTag
import scala.{specialized => spec}
import spire.algebra.Order
/**
* Interface for a sorting strategy object.
*/
trait Sort extends Any {
def sort[@spec A: Order: ClassTag](data:Array[A]): Unit
}
/**
* Simple implementation of insertion sort.
*
* Works for small arrays but due to O(n^2) complexity is not generally good.
*/
object InsertionSort extends Sort {
final def sort[@spec A:Order:ClassTag](data:Array[A]): Unit =
sort(data, 0, data.length)
final def sort[@spec A](data:Array[A], start:Int, end:Int)(implicit o:Order[A], ct:ClassTag[A]): Unit = {
var i = start + 1
while (i < end) {
val item = data(i)
var hole = i
while (hole > start && o.gt(data(hole - 1), item)) {
data(hole) = data(hole - 1)
hole -= 1
}
data(hole) = item
i += 1
}
}
}
/**
* In-place merge sort implementation. This sort is stable but does mutate
* the given array. It is an in-place sort but it does allocate a temporary
* array of the same size as the input. It uses InsertionSort for sorting very
* small arrays.
*/
object MergeSort extends Sort {
@inline final def startWidth: Int = 8
@inline final def startStep: Int = 16
final def sort[@spec A:Order:ClassTag](data:Array[A]): Unit = {
val len = data.length
if (len <= startStep) return InsertionSort.sort(data)
var buf1:Array[A] = data
var buf2:Array[A] = new Array[A](len)
var tmp:Array[A] = null
var i = 0
var limit = len - startWidth
while (i < limit) { InsertionSort.sort(data, i, i + startWidth); i += startWidth }
if (i < len) InsertionSort.sort(data, i, len)
var width = startWidth
var step = startStep
while (width < len) {
i = 0
limit = len - step
while (i < limit) {
merge(buf1, buf2, i, i + width, i + step); i += step
}
while (i < len) {
merge(buf1, buf2, i, min(i + width, len), len); i += step
}
tmp = buf2
buf2 = buf1
buf1 = tmp
width *= 2
step *= 2
}
if (buf1 != data) System.arraycopy(buf1, 0, data, 0, len)
}
/**
* Helper method for mergeSort, used to do a single "merge" between two
* sections of the input array. The start, mid and end parameters denote the
* left and right ranges of the input to merge, as well as the area of the
* ouput to write to.
*/
@inline final def merge[@spec A](in:Array[A], out:Array[A], start:Int, mid:Int, end:Int)(implicit o:Order[A]): Unit = {
var ii = start
var jj = mid
var kk = start
while (kk < end) {
if (ii < mid && (jj >= end || o.lteqv(in(ii), in(jj)))) {
out(kk) = in(ii); ii += 1
} else {
out(kk) = in(jj); jj += 1
}
kk += 1
}
}
}
/**
* In-place quicksort implementation. It is not stable, but does not allocate
* extra space (other than stack). Like MergeSort, it uses InsertionSort for
* sorting very small arrays.
*/
object QuickSort {
@inline final def limit: Int = 16
final def sort[@spec A:Order:ClassTag](data:Array[A]): Unit = qsort(data, 0, data.length - 1)
final def qsort[@spec A](data:Array[A], left: Int, right: Int)(implicit o:Order[A], ct:ClassTag[A]): Unit = {
if (right - left < limit) return InsertionSort.sort(data, left, right + 1)
val pivot = left + (right - left) / 2
val next = partition(data, left, right, pivot)
qsort(data, left, next - 1)
qsort(data, next + 1, right)
}
final def partition[@spec A](data:Array[A], left:Int, right:Int, pivot:Int)(implicit o:Order[A], ct:ClassTag[A]): Int = {
val value = data(pivot)
//swap(pivot, right)
var tmp = data(pivot); data(pivot) = data(right); data(right) = tmp
var store = left
var i = left
while (i < right) {
if (o.lt(data(i), value)) {
//swap(i, store)
tmp = data(i); data(i) = data(store); data(store) = tmp
store += 1
}
i += 1
}
//swap(store, right)
tmp = data(store); data(store) = data(right); data(right) = tmp
store
}
}
// TODO: it would be nice to try implementing some hybrid sorts, for instance
// Tim Peters' sort algorithm.
/**
* Object providing in-place sorting capability for arrays.
*
* Sorting.sort() uses quickSort() by default (in-place, not stable, generally
* fastest but might hit bad cases where it's O(n^2)). Also provides
* mergeSort() (in-place, stable, uses extra memory, still pretty fast) and
* insertionSort(), which is slow except for small arrays.
*/
object Sorting {
final def sort[@spec A:Order:ClassTag](data:Array[A]): Unit = QuickSort.sort(data)
final def insertionSort[@spec A:Order:ClassTag](data:Array[A]): Unit = InsertionSort.sort(data)
final def mergeSort[@spec A:Order:ClassTag](data:Array[A]): Unit = MergeSort.sort(data)
final def quickSort[@spec K:Order:ClassTag](data:Array[K]): Unit = QuickSort.sort(data)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy