spire.algebra.Bool.scala Maven / Gradle / Ivy
package spire.algebra
import scala.{specialized => sp}
import spire.algebra.lattice.Heyting
/**
* A boolean algebra is a structure that defines a few basic operations, namely
* as conjunction (&), disjunction (|), and negation (~). Both conjunction and
* disjunction must be associative, commutative and should distribute over each
* other. Also, both have an identity and they obey the absorption law; that
* is `x & (y | x) == x` and `x | (x & y) == x`.
*/
trait Bool[@sp(Boolean, Byte, Short, Int, Long) A] extends Any with Heyting[A] {
def xor(a: A, b: A): A = or(and(a, complement(b)), and(complement(a), b))
def imp(a: A, b: A): A = or(complement(a), b)
def nand(a: A, b: A): A = complement(and(a, b))
def nor(a: A, b: A): A = complement(or(a, b))
def nxor(a: A, b: A): A = and(or(a, complement(b)), or(complement(a), b))
def dual: Bool[A] = new DualBool(this)
}
class DualBool[@sp(Boolean, Byte, Short, Int, Long) A](orig: Bool[A]) extends Bool[A] {
def one: A = orig.zero
def zero: A = orig.one
def and(a: A, b: A): A = orig.or(a, b)
def or(a: A, b: A): A = orig.and(a, b)
def complement(a: A): A = orig.complement(a)
override def xor(a: A, b: A): A = orig.complement(orig.xor(a, b))
override def imp(a: A, b: A): A = orig.and(orig.complement(a), b)
override def nand(a: A, b: A): A = orig.nor(a, b)
override def nor(a: A, b: A): A = orig.nand(a, b)
override def nxor(a: A, b: A): A = orig.xor(a, b)
override def dual: Bool[A] = orig
}
object Bool {
@inline final def apply[@sp(Boolean, Byte, Short, Int, Long) A](implicit ev: Bool[A]): Bool[A] = ev
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy