spire.algebra.Group.scala Maven / Gradle / Ivy
package spire.algebra
import scala.{ specialized => spec }
/**
* A group is a monoid where each element has an inverse.
*/
trait Group[@spec(Byte, Short, Int, Long, Float, Double) A] extends Any with Monoid[A] {
/**
* Return the inverse of `a`.
*/
def inverse(a: A): A
/**
* Combine `a` with the inverse of `b`.
*/
def opInverse(a: A, b: A): A = op(a, inverse(b))
/**
* Return `a` combined with itself `n` times.
*/
override def combinen(a: A, n: Int): A =
if (n == Int.MinValue) op(combinen(inverse(a), Int.MaxValue), inverse(a))
else if (n < 0) combinen(inverse(a), -n)
else if (n == 0) id
else if (n == 1) a
else combinenAboveOne(a, n)
}
object Group {
@inline final def apply[A](implicit ev: Group[A]): Group[A] = ev
@inline final def additive[A](implicit A: AdditiveGroup[A]): Group[A] = A.additive
@inline final def multiplicative[A](implicit A: MultiplicativeGroup[A]): Group[A] = A.multiplicative
}
/**
* An abelian group is a group whose operation is commutative.
*/
trait AbGroup[@spec(Byte, Short, Int, Long, Float, Double) A] extends Any with Group[A] with CMonoid[A]
object AbGroup {
@inline final def apply[A](implicit ev: AbGroup[A]): AbGroup[A] = ev
@inline final def additive[A](implicit A: AdditiveAbGroup[A]): AbGroup[A] = A.additive
@inline final def multiplicative[A](implicit A: MultiplicativeAbGroup[A]): AbGroup[A] = A.multiplicative
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy