spire.algebra.Monoid.scala Maven / Gradle / Ivy
package spire.algebra
import scala.{ specialized => spec }
/**
* A monoid is a semigroup with an identity. A monoid is a specialization of a
* semigroup, so its operation must be associative. Additionally,
* `op(x, id) == op(id, x) == x`. For example, if we have `Monoid[String]`,
* with `op` as string concatenation, then `id = ""`.
*/
trait Monoid[@spec(Boolean, Byte, Short, Int, Long, Float, Double) A] extends Any with Semigroup[A] {
/**
* Return the identity element for this monoid.
*/
def id: A
/**
* Tests if `a` is the identity.
*/
def isId(a: A)(implicit ev: Eq[A]): Boolean = ev.eqv(a, id)
/**
* Return `a` combined with itself `n` times.
*/
override def combinen(a: A, n: Int): A =
if (n < 0) throw new IllegalArgumentException("Repeated combination for monoids must have repetitions >= 0")
else if (n == 0) id
else if (n == 1) a
else combinenAboveOne(a, n)
/**
* Given a sequence of `as`, combine them using the monoid and return the total.
*/
def combine(as: TraversableOnce[A]): A = as.aggregate(id)(op, op)
}
object Monoid {
@inline final def apply[A](implicit m: Monoid[A]): Monoid[A] = m
/**
* If an implicit `AdditiveMonoid[A]` exists, then it is converted to a plain
* `Monoid[A]`.
*/
@inline final def additive[A](implicit A: AdditiveMonoid[A]): Monoid[A] = A.additive
/**
* If an implicit `MultiplicativeMonoid[A]` exists, then it is converted to a
* plain `Monoid[A]`.
*/
@inline final def multiplicative[A](implicit A: MultiplicativeMonoid[A]): Monoid[A] = A.multiplicative
}
/**
* CMonoid represents a commutative monoid.
*
* A monoid is commutative if for all x and y, x |+| y === y |+| x.
*/
trait CMonoid[@spec(Boolean, Byte, Short, Int, Long, Float, Double) A] extends Any with Monoid[A] with CSemigroup[A]
object CMonoid {
@inline final def apply[A](implicit ev: CMonoid[A]): CMonoid[A] = ev
@inline final def additive[A](implicit A: AdditiveCMonoid[A]): CMonoid[A] = A.additive
@inline final def multiplicative[A](implicit A: MultiplicativeCMonoid[A]): CMonoid[A] = A.multiplicative
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy