spire.algebra.Semigroup.scala Maven / Gradle / Ivy
package spire.algebra
import scala.{ specialized => spec }
import scala.annotation.{ switch, tailrec }
/**
* A semigroup is any set `A` with an associative operation (`op`).
*/
trait Semigroup[@spec(Boolean, Byte, Short, Int, Long, Float, Double) A] extends Any {
def op(x: A, y: A): A
/**
* Return `a` combined with itself `n` times.
*/
def combinen(a: A, n: Int): A =
if (n <= 0) throw new IllegalArgumentException("Repeated combination for semigroups must have repetitions > 0")
else if (n == 1) a
else combinenAboveOne(a, n)
protected def combinenAboveOne(a: A, n: Int): A = {
@tailrec def loop(b: A, k: Int, extra: A): A =
if (k == 1) {
op(b, extra)
} else {
val x = if ((k & 1) == 1) op(b, extra) else extra
loop(op(b, b), k >>> 1, x)
}
loop(a, n - 1, a)
}
/**
* Given a sequence of `as`, combine them using the semigroup and return the total.
*
* If the sequence is empty, returns None. Otherwise, returns Some(total).
*/
def combineOption(as: TraversableOnce[A]): Option[A] = as.reduceOption(op)
}
object Semigroup {
@inline final def apply[A](implicit s: Semigroup[A]): Semigroup[A] = s
/**
* If there exists an implicit `AdditiveSemigroup[A]`, this returns a
* `Semigroup[A]` using `plus` for `op`.
*/
@inline final def additive[A](implicit A: AdditiveSemigroup[A]): Semigroup[A] = A.additive
/**
* If there exists an implicit `MultiplicativeSemigroup[A]`, this returns a
* `Semigroup[A]` using `times` for `op`.
*/
@inline final def multiplicative[A](implicit A: MultiplicativeSemigroup[A]): Semigroup[A] = A.multiplicative
}
/**
* CSemigroup represents a commutative semigroup.
*
* A semigroup is commutative if for all x and y, x |+| y === y |+| x.
*/
trait CSemigroup[@spec(Boolean, Byte, Short, Int, Long, Float, Double) A] extends Any with Semigroup[A]
object CSemigroup {
@inline final def apply[A](implicit ev: CSemigroup[A]): CSemigroup[A] = ev
@inline final def additive[A](implicit A: AdditiveCSemigroup[A]): CSemigroup[A] = A.additive
@inline final def multiplicative[A](implicit A: MultiplicativeCSemigroup[A]): CSemigroup[A] = A.multiplicative
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy