spire.algebra.Sign.scala Maven / Gradle / Ivy
package spire.algebra
/**
* A simple ADT representing the `Sign` of an object.
*/
sealed abstract class Sign(val toInt: Int) {
import Sign._
def unary_-(): Sign = this match {
case Positive => Negative
case Negative => Positive
case Zero => Zero
}
def *(that: Sign): Sign = Sign(this.toInt * that.toInt)
def **(that: Int): Sign = Sign(spire.math.pow(this.toInt, that).toInt)
}
object Sign {
case object Zero extends Sign(0)
case object Positive extends Sign(1)
case object Negative extends Sign(-1)
implicit def sign2int(s: Sign): Int = s.toInt
implicit def apply(i: Int): Sign =
if (i == 0) Zero else if (i > 0) Positive else Negative
class SignAlgebra extends CMonoid[Sign] with Signed[Sign] with Order[Sign] {
def id: Sign = Positive
def op(a: Sign, b: Sign): Sign = a * b
override def sign(a: Sign): Sign = a
def signum(a: Sign): Int = a.toInt
def abs(a: Sign): Sign = if (a == Negative) Positive else a
def compare(x: Sign, y: Sign): Int = java.lang.Integer.signum(x.toInt - y.toInt)
}
implicit final val SignAlgebra = new SignAlgebra
implicit final val SignMultiplicativeGroup: MultiplicativeCMonoid[Sign] =
Multiplicative(SignAlgebra)
implicit def SignAction[A](implicit A: AdditiveGroup[A]): MultiplicativeAction[A, Sign] =
new MultiplicativeAction[A, Sign] {
def gtimesl(s: Sign, a: A): A = s match {
case Positive => a
case Negative => A.negate(a)
case Zero => A.zero
}
def gtimesr(a: A, s: Sign): A = gtimesl(s, a)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy