spire.math.Merging.scala Maven / Gradle / Ivy
package spire.math
import spire.algebra.Order
import scala.{specialized => spec}
import scala.annotation.tailrec
import scala.reflect.ClassTag
/**
* Interface for a merging strategy object.
*/
trait Merge extends Any {
def merge[@spec A: Order: ClassTag](a:Array[A], b:Array[A]): Array[A]
}
/**
* Abstract class that can be used to implement custom binary merges with e.g. special collision behavior or an ordering
* that is not defined via an Order[T] typeclass
*/
abstract class BinaryMerge {
private[this] final def binarySearchB(ai: Int, b0: Int, b1: Int): Int = {
@tailrec
def binarySearch0(low: Int, high: Int): Int =
if (low <= high) {
val mid = (low + high) >>> 1
val c = compare(ai, mid)
if (c > 0)
binarySearch0(mid + 1, high)
else if (c < 0)
binarySearch0(low, mid - 1)
else
mid
} else -(low + 1)
binarySearch0(b0, b1 - 1)
}
/**
* Compare element ai of the first sequence with element bi of the second sequence
* @param ai an index into the first sequence
* @param bi an index into the second sequence
* @return -1 if a(ai) < b(bi), 0 if a(ai) == b(bi), 1 if a(ai) > b(bi)
*/
def compare(ai: Int, bi: Int): Int
/**
* Called when elements a(ai) and b(bi) are equal according to compare
* @param ai
* @param bi
*/
def collision(ai: Int, bi: Int): Unit
/**
* Called for a subsequence of elements of a that are not overlapping any element of b
*/
def fromA(a0: Int, a1: Int, bi: Int): Unit
/**
* Called for a subsequence of elements of b that are not overlapping any element of a
*/
def fromB(ai: Int, b0: Int, b1: Int): Unit
def merge0(a0: Int, a1: Int, b0: Int, b1: Int): Unit = {
if (a0 == a1) {
if (b0 != b1)
fromB(a0, b0, b1)
} else if (b0 == b1) {
fromA(a0, a1, b0)
} else {
val am = (a0 + a1) / 2
val res = binarySearchB(am, b0, b1)
if (res >= 0) {
// same elements
val bm = res
// merge everything below a(am) with everything below the found element
merge0(a0, am, b0, bm)
// add the elements a(am) and b(bm)
collision(am, bm)
// merge everything above a(am) with everything above the found element
merge0(am + 1, a1, bm + 1, b1)
} else {
val bm = -res - 1
// merge everything below a(am) with everything below the found insertion point
merge0(a0, am, b0, bm)
// add a(am)
fromA(am, am + 1, bm)
// everything above a(am) with everything above the found insertion point
merge0(am + 1, a1, bm, b1)
}
}
}
}
/**
* Merge that uses binary search to reduce the number of comparisons
*
* This can be orders of magnitude quicker than a linear merge for types that have a relatively expensive comparison
* operation (e.g. Rational, BigInt, tuples) and will not be much slower than linear merge even in the worst case for
* types that have a very fast comparison (e.g. Int)
*/
object BinaryMerge extends Merge {
def merge[@specialized T: Order: ClassTag](a: Array[T], b: Array[T]): Array[T] = {
new ArrayBinaryMerge(a,b).result
}
/*
private[this] def resize[T:ClassTag](x:Array[T], n: Int): Array[T] = {
if (n == x.length)
x
else {
val t = Array.ofDim[T](n)
System.arraycopy(x, 0, t, 0, n)
t
}
}*/
private class ArrayBinaryMerge[@specialized T](a: Array[T], b: Array[T])(implicit o: Order[T], c: ClassTag[T]) extends BinaryMerge {
def compare(ai: Int, bi: Int): Int = o.compare(a(ai), b(bi))
def fromA(a0: Int, a1: Int, bi: Int): Unit = {
System.arraycopy(a, a0, r, ri, a1 - a0)
ri += a1 - a0
}
def fromB(ai: Int, b0: Int, b1: Int): Unit = {
System.arraycopy(b, b0, r, ri, b1 - b0)
ri += b1 - b0
}
def collision(ai: Int, bi: Int): Unit = {
r(ri) = a(ai)
ri += 1
r(ri) = b(bi)
ri += 1
}
val r = Array.ofDim[T](a.length + b.length)
var ri = 0
merge0(0, a.length, 0, b.length)
def result: Array[T] = r
}
}
/**
* Simple linear merge
*/
object LinearMerge extends Merge {
def merge[@spec T: Order : ClassTag](a: Array[T], b: Array[T]): Array[T] = {
val o = implicitly[Order[T]]
val r = Array.ofDim[T](a.length + b.length)
var ri = 0
var ai = 0
var bi = 0
while (ai < a.length && bi < b.length) {
val c = o.compare(a(ai), b(bi))
if (c < 0) {
r(ri) = a(ai)
ri += 1
ai += 1
} else if (c > 0) {
r(ri) = b(bi)
ri += 1
bi += 1
} else {
r(ri) = a(ai)
ri += 1
r(ri) = b(bi)
ri += 1
ai += 1
bi += 1
}
}
while (ai < a.length) {
r(ri) = a(ai)
ri += 1
ai += 1
}
while (bi < b.length) {
r(ri) = b(bi)
ri += 1
bi += 1
}
r
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy