spire.optional.unicode.scala Maven / Gradle / Ivy
package spire.optional
import spire.algebra._
import spire.algebra.lattice._
import spire.math._
import spire.macros.Ops
package object unicode {
type ℍ = Quaternion[Real]
type ℂ = Complex[Real]
type ℝ = Real
type ℚ = Rational
type ℤ = SafeLong
type ℕ = Natural
val ℝ = Real
val ℚ = Rational
val ℤ = SafeLong
val ℕ = Natural
val ⅇ = Real.e
val π = Real.pi
val φ = Real.phi
val ⅈ = Complex.i[Real]
val ⅉ = Quaternion.j[Real]
def ⊤[A](implicit ev: Heyting[A]): A = ev.one
def ⊥[A](implicit ev: Heyting[A]): A = ev.zero
def ¬[A](a: A)(implicit ev: Heyting[A]): A = ev.complement(a)
def √[A](a: A)(implicit ev: NRoot[A]): A = ev.sqrt(a)
def ∛[A](a: A)(implicit ev: NRoot[A]): A = ev.nroot(a, 3)
def ∜[A](a: A)(implicit ev: NRoot[A]): A = ev.nroot(a, 4)
def Σ[A](as: Iterable[A])(implicit ev: AdditiveMonoid[A]): A =
as.aggregate(ev.zero)(ev.plus, ev.plus)
def Π[A](as: Iterable[A])(implicit ev: MultiplicativeMonoid[A]): A =
as.aggregate(ev.one)(ev.times, ev.times)
implicit class TimesOp[A](lhs: A)(implicit ev: MultiplicativeSemigroup[A]) {
def ∙(rhs: A): A = ev.times(lhs, rhs)
}
implicit class EqOps[A](lhs: A)(implicit ev: Eq[A]) {
def ≡(rhs: A): Boolean = macro Ops.binop[A, A]
def ≠(rhs: A): Boolean = macro Ops.binop[A, A]
}
implicit class PartialOrderOps[A](lhs: A)(implicit ev: PartialOrder[A]) {
def ≤(rhs: A): Boolean = macro Ops.binop[A, A]
def ≥(rhs: A): Boolean = macro Ops.binop[A, A]
}
implicit class MeetSemilatticeOps[A](lhs: A)(implicit ev: MeetSemilattice[A]) {
def ∧(rhs: A): A = macro Ops.binop[A, A]
}
implicit class JoinSemilatticeOps[A](lhs: A)(implicit ev: JoinSemilattice[A]) {
def ∨(rhs: A): A = macro Ops.binop[A, A]
}
implicit class HeytingOps[A](lhs: A)(implicit ev: Heyting[A]) {
def ⊃(rhs: A): A = macro Ops.binop[A, A]
}
implicit class BoolOps[A](lhs: A)(implicit ev: Bool[A]) {
def ⊻(rhs: A): A = macro Ops.binop[A, A]
def ⊼(rhs: A): A = macro Ops.binop[A, A]
def ⊽(rhs: A): A = macro Ops.binop[A, A]
}
implicit class SymbolicSetOps[A](val lhs: Set[A]) extends AnyVal {
def ∋(a: A): Boolean = lhs(a)
def ∌(a: A): Boolean = !lhs(a)
def ∈:(a: A): Boolean = lhs(a)
def ∉:(a: A): Boolean = !lhs(a)
def ∩(rhs: Set[A]): Set[A] = lhs & rhs
def ∪(rhs: Set[A]): Set[A] = lhs | rhs
def \(rhs: Set[A]): Set[A] = lhs -- rhs
def ⊂(rhs: Set[A]): Boolean = lhs.size < rhs.size && lhs.forall(rhs)
def ⊃(rhs: Set[A]): Boolean = lhs.size > rhs.size && rhs.forall(lhs)
def ⊆(rhs: Set[A]): Boolean = lhs.size <= rhs.size && lhs.forall(rhs)
def ⊇(rhs: Set[A]): Boolean = lhs.size >= rhs.size && rhs.forall(lhs)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy